These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 33684567
1. TET1 promotes RXRα expression and adipogenesis through DNA demethylation. Qian H, Zhao J, Yang X, Wu S, An Y, Qu Y, Li Z, Ge H, Li E, Qi W. Biochim Biophys Acta Mol Cell Biol Lipids; 2021 Jun; 1866(6):158919. PubMed ID: 33684567 [Abstract] [Full Text] [Related]
2. Structural insight into substrate preference for TET-mediated oxidation. Hu L, Lu J, Cheng J, Rao Q, Li Z, Hou H, Lou Z, Zhang L, Li W, Gong W, Liu M, Sun C, Yin X, Li J, Tan X, Wang P, Wang Y, Fang D, Cui Q, Yang P, He C, Jiang H, Luo C, Xu Y. Nature; 2015 Nov 05; 527(7576):118-22. PubMed ID: 26524525 [Abstract] [Full Text] [Related]
3. Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-carboxylcytosine. Ito S, Shen L, Dai Q, Wu SC, Collins LB, Swenberg JA, He C, Zhang Y. Science; 2011 Sep 02; 333(6047):1300-3. PubMed ID: 21778364 [Abstract] [Full Text] [Related]
4. TET1 regulates gene expression and repression of endogenous retroviruses independent of DNA demethylation. Stolz P, Mantero AS, Tvardovskiy A, Ugur E, Wange LE, Mulholland CB, Cheng Y, Wierer M, Enard W, Schneider R, Bartke T, Leonhardt H, Elsässer SJ, Bultmann S. Nucleic Acids Res; 2022 Aug 26; 50(15):8491-8511. PubMed ID: 35904814 [Abstract] [Full Text] [Related]
5. PRDM14 promotes active DNA demethylation through the ten-eleven translocation (TET)-mediated base excision repair pathway in embryonic stem cells. Okashita N, Kumaki Y, Ebi K, Nishi M, Okamoto Y, Nakayama M, Hashimoto S, Nakamura T, Sugasawa K, Kojima N, Takada T, Okano M, Seki Y. Development; 2014 Jan 26; 141(2):269-80. PubMed ID: 24335252 [Abstract] [Full Text] [Related]
6. Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 hydroxylase in mouse embryonic stem cells. Xu Y, Wu F, Tan L, Kong L, Xiong L, Deng J, Barbera AJ, Zheng L, Zhang H, Huang S, Min J, Nicholson T, Chen T, Xu G, Shi Y, Zhang K, Shi YG. Mol Cell; 2011 May 20; 42(4):451-64. PubMed ID: 21514197 [Abstract] [Full Text] [Related]
8. Specific functions of TET1 and TET2 in regulating mesenchymal cell lineage determination. Cakouros D, Hemming S, Gronthos K, Liu R, Zannettino A, Shi S, Gronthos S. Epigenetics Chromatin; 2019 Jan 03; 12(1):3. PubMed ID: 30606231 [Abstract] [Full Text] [Related]
9. Stable 5-Hydroxymethylcytosine (5hmC) Acquisition Marks Gene Activation During Chondrogenic Differentiation. Taylor SE, Li YH, Smeriglio P, Rath M, Wong WH, Bhutani N. J Bone Miner Res; 2016 Mar 03; 31(3):524-34. PubMed ID: 26363184 [Abstract] [Full Text] [Related]
10. 5-hydroxymethylcytosines regulate gene expression as a passive DNA demethylation resisting epigenetic mark in proliferative somatic cells. Wei A, Zhang H, Qiu Q, Fabyanic EB, Hu P, Wu H. bioRxiv; 2023 Sep 27. PubMed ID: 37808741 [Abstract] [Full Text] [Related]
11. Structure of a Naegleria Tet-like dioxygenase in complex with 5-methylcytosine DNA. Hashimoto H, Pais JE, Zhang X, Saleh L, Fu ZQ, Dai N, Corrêa IR, Zheng Y, Cheng X. Nature; 2014 Feb 20; 506(7488):391-5. PubMed ID: 24390346 [Abstract] [Full Text] [Related]
12. MYC deregulates TET1 and TET2 expression to control global DNA (hydroxy)methylation and gene expression to maintain a neoplastic phenotype in T-ALL. Poole CJ, Lodh A, Choi JH, van Riggelen J. Epigenetics Chromatin; 2019 Jul 02; 12(1):41. PubMed ID: 31266538 [Abstract] [Full Text] [Related]
13. Mechanisms that regulate the activities of TET proteins. Joshi K, Liu S, Breslin S J P, Zhang J. Cell Mol Life Sci; 2022 Jun 15; 79(7):363. PubMed ID: 35705880 [Abstract] [Full Text] [Related]
14. Roles of TET and TDG in DNA demethylation in proliferating and non-proliferating immune cells. Onodera A, González-Avalos E, Lio CJ, Georges RO, Bellacosa A, Nakayama T, Rao A. Genome Biol; 2021 Jun 22; 22(1):186. PubMed ID: 34158086 [Abstract] [Full Text] [Related]
15. Distinct and stage-specific contributions of TET1 and TET2 to stepwise cytosine oxidation in the transition from naive to primed pluripotency. Mulholland CB, Traube FR, Ugur E, Parsa E, Eckl EM, Schönung M, Modic M, Bartoschek MD, Stolz P, Ryan J, Carell T, Leonhardt H, Bultmann S. Sci Rep; 2020 Jul 21; 10(1):12066. PubMed ID: 32694513 [Abstract] [Full Text] [Related]
16. Distinct and overlapping control of 5-methylcytosine and 5-hydroxymethylcytosine by the TET proteins in human cancer cells. Putiri EL, Tiedemann RL, Thompson JJ, Liu C, Ho T, Choi JH, Robertson KD. Genome Biol; 2014 Jun 23; 15(6):R81. PubMed ID: 24958354 [Abstract] [Full Text] [Related]
17. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. He YF, Li BZ, Li Z, Liu P, Wang Y, Tang Q, Ding J, Jia Y, Chen Z, Li L, Sun Y, Li X, Dai Q, Song CX, Zhang K, He C, Xu GL. Science; 2011 Sep 02; 333(6047):1303-7. PubMed ID: 21817016 [Abstract] [Full Text] [Related]
18. TET-mediated hydroxymethylcytosine at the Pparγ locus is required for initiation of adipogenic differentiation. Yoo Y, Park JH, Weigel C, Liesenfeld DB, Weichenhan D, Plass C, Seo DG, Lindroth AM, Park YJ. Int J Obes (Lond); 2017 Apr 02; 41(4):652-659. PubMed ID: 28100914 [Abstract] [Full Text] [Related]
19. Acute depletion of Tet1-dependent 5-hydroxymethylcytosine levels impairs LIF/Stat3 signaling and results in loss of embryonic stem cell identity. Freudenberg JM, Ghosh S, Lackford BL, Yellaboina S, Zheng X, Li R, Cuddapah S, Wade PA, Hu G, Jothi R. Nucleic Acids Res; 2012 Apr 02; 40(8):3364-77. PubMed ID: 22210859 [Abstract] [Full Text] [Related]
20. Vitamin C induces Tet-dependent DNA demethylation and a blastocyst-like state in ES cells. Blaschke K, Ebata KT, Karimi MM, Zepeda-Martínez JA, Goyal P, Mahapatra S, Tam A, Laird DJ, Hirst M, Rao A, Lorincz MC, Ramalho-Santos M. Nature; 2013 Aug 08; 500(7461):222-6. PubMed ID: 23812591 [Abstract] [Full Text] [Related] Page: [Next] [New Search]