These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
170 related items for PubMed ID: 3371875
21. Oxidative stress as a precursor to the irreversible hepatocellular injury caused by hyperthermia. Skibba JL, Powers RH, Stadnicka A, Cullinane DW, Almagro UA, Kalbfleisch JH. Int J Hyperthermia; 1991; 7(5):749-61. PubMed ID: 1940510 [Abstract] [Full Text] [Related]
25. Involvement of xanthine oxidase in oxidative stress and iron release during hyperthermic rat liver perfusion. Powers RH, Stadnicka A, Kalbfleish JH, Skibba JL. Cancer Res; 1992 Apr 01; 52(7):1699-703. PubMed ID: 1551099 [Abstract] [Full Text] [Related]
27. Glycine minimizes reperfusion injury in a low-flow, reflow liver perfusion model in the rat. Zhong Z, Jones S, Thurman RG. Am J Physiol; 1996 Feb 01; 270(2 Pt 1):G332-8. PubMed ID: 8779976 [Abstract] [Full Text] [Related]
28. Topographic dissociation between mitochondrial dysfunction and cell death during low-flow hypoxia in perfused rat liver. Suematsu M, Suzuki H, Ishii H, Kato S, Hamamatsu H, Miura S, Tsuchiya M. Lab Invest; 1992 Oct 01; 67(4):434-42. PubMed ID: 1434527 [Abstract] [Full Text] [Related]
29. A new method to study glutathione adduct formation in periportal and pericentral regions of the liver lobule by micro-reflectance spectrophotometry. Harris C, Thurman RG. Mol Pharmacol; 1986 Jan 01; 29(1):88-96. PubMed ID: 3945230 [Abstract] [Full Text] [Related]
32. Urea synthesis from ammonia in periportal and pericentral regions of the liver lobule. Effect of oxygen. Kari FW, Yoshihara H, Thurman RG. Eur J Biochem; 1987 Feb 16; 163(1):1-7. PubMed ID: 3816789 [Abstract] [Full Text] [Related]
33. Reoxygenation injury following anoxic perfusion preferentially impairs bile acid-independent bile flow. Konno H, Hardison WG, Miyai K. Eur Surg Res; 1991 Feb 16; 23(3-4):151-7. PubMed ID: 1782960 [Abstract] [Full Text] [Related]
35. Metabolic shift in liver: correlation between perfusion temperature and hypoxia inducible factor-1α. Ferrigno A, Di Pasqua LG, Bianchi A, Richelmi P, Vairetti M. World J Gastroenterol; 2015 Jan 28; 21(4):1108-16. PubMed ID: 25632183 [Abstract] [Full Text] [Related]
36. Hypoxia-reoxygenation is as damaging as ischemia-reperfusion in the rat liver. Tan S, Yokoyama Y, Wang Z, Zhou F, Nielsen V, Murdoch AD, Adams C, Parks DA. Crit Care Med; 1998 Jun 28; 26(6):1089-95. PubMed ID: 9635660 [Abstract] [Full Text] [Related]
37. Minimal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury. Doctor RB, Mandel LJ. J Am Soc Nephrol; 1991 Jan 28; 1(7):959-69. PubMed ID: 1883966 [Abstract] [Full Text] [Related]
38. Oxygen free radical formation by rat hepatocytes during postanoxic reoxygenation: scavenging effect of albumin. Caraceni P, Gasbarrini A, Van Thiel DH, Borle AB. Am J Physiol; 1994 Mar 28; 266(3 Pt 1):G451-8. PubMed ID: 8166284 [Abstract] [Full Text] [Related]
39. Direct cytotoxicity of hypoxia-reoxygenation towards sinusoidal endothelial cells in the rat. Blanc MC, Housset C, Lasnier E, Rey C, Capeau J, Giboudeau J, Poupon R, Vaubourdolle M. Liver; 1999 Feb 28; 19(1):42-9. PubMed ID: 9928765 [Abstract] [Full Text] [Related]
40. Gluconeogenesis from fructose predominates in periportal regions of the liver lobule. Anundi I, Kauffman FC, Thurman RG. J Biol Chem; 1987 Jul 15; 262(20):9529-34. PubMed ID: 3597422 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]