These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
193 related items for PubMed ID: 33723038
21. Cyclic Boronates Inhibit All Classes of β-Lactamases. Cahill ST, Cain R, Wang DY, Lohans CT, Wareham DW, Oswin HP, Mohammed J, Spencer J, Fishwick CW, McDonough MA, Schofield CJ, Brem J. Antimicrob Agents Chemother; 2017 Apr; 61(4):. PubMed ID: 28115348 [Abstract] [Full Text] [Related]
22. Design of dipicolinic acid derivatives as New Delhi metallo-β-lactamase-1 inhibitors using a combined computational approach. Wang X, Gao Y, Yu Y, Yang Y, Wang G, Sun L, Niu X. J Biomol Struct Dyn; 2020 Jul; 38(11):3384-3395. PubMed ID: 31549586 [Abstract] [Full Text] [Related]
23. A Lysine-Targeted Affinity Label for Serine-β-Lactamase Also Covalently Modifies New Delhi Metallo-β-lactamase-1 (NDM-1). Thomas PW, Cammarata M, Brodbelt JS, Monzingo AF, Pratt RF, Fast W. Biochemistry; 2019 Jun 25; 58(25):2834-2843. PubMed ID: 31145588 [Abstract] [Full Text] [Related]
24. Inhibitor and substrate binding by New Delhi metallo-beta-lactamase-1: a molecular dynamics studies. Wang YT, Lu CY, Hour TC, Cheng TL. Curr Comput Aided Drug Des; 2014 Jun 25; 10(3):197-204. PubMed ID: 25479381 [Abstract] [Full Text] [Related]
25. Structural studies of triazole inhibitors with promising inhibitor effects against antibiotic resistance metallo-β-lactamases. Muhammad Z, Skagseth S, Boomgaren M, Akhter S, Fröhlich C, Ismael A, Christopeit T, Bayer A, Leiros HS. Bioorg Med Chem; 2020 Aug 01; 28(15):115598. PubMed ID: 32631568 [Abstract] [Full Text] [Related]
26. Structural and biochemical analysis of the metallo-β-lactamase L1 from emerging pathogen Stenotrophomonas maltophilia revealed the subtle but distinct di-metal scaffold for catalytic activity. Kim Y, Maltseva N, Wilamowski M, Tesar C, Endres M, Joachimiak A. Protein Sci; 2020 Mar 01; 29(3):723-743. PubMed ID: 31846104 [Abstract] [Full Text] [Related]
27. Structure-based design of covalent inhibitors targeting metallo-β-lactamases. Chen C, Yang KW. Eur J Med Chem; 2020 Oct 01; 203():112573. PubMed ID: 32707526 [Abstract] [Full Text] [Related]
28. Design, synthesis, and in vitro and biological evaluation of potent amino acid-derived thiol inhibitors of the metallo-β-lactamase IMP-1. Arjomandi OK, Hussein WM, Vella P, Yusof Y, Sidjabat HE, Schenk G, McGeary RP. Eur J Med Chem; 2016 May 23; 114():318-27. PubMed ID: 27017264 [Abstract] [Full Text] [Related]
29. Molecular dynamics simulation studies of novel β-lactamase inhibitor. Ul Haq F, Abro A, Raza S, Liedl KR, Azam SS. J Mol Graph Model; 2017 Jun 23; 74():143-152. PubMed ID: 28432959 [Abstract] [Full Text] [Related]
30. Potential Inhibitors Against NDM-1 Type Metallo-β-Lactamases: An Overview. Sharma S, Sharma S, Singh PP, Khan IA. Microb Drug Resist; 2020 Dec 23; 26(12):1568-1588. PubMed ID: 32486911 [Abstract] [Full Text] [Related]
31. Crystal structure of the IMP-1 metallo beta-lactamase from Pseudomonas aeruginosa and its complex with a mercaptocarboxylate inhibitor: binding determinants of a potent, broad-spectrum inhibitor. Concha NO, Janson CA, Rowling P, Pearson S, Cheever CA, Clarke BP, Lewis C, Galleni M, Frère JM, Payne DJ, Bateson JH, Abdel-Meguid SS. Biochemistry; 2000 Apr 18; 39(15):4288-98. PubMed ID: 10757977 [Abstract] [Full Text] [Related]
32. Drug Repurposing of the Unithiol: Inhibition of Metallo-β-Lactamases for the Treatment of Carbapenem-Resistant Gram-Negative Bacterial Infections. Grigorenko VG, Khrenova MG, Andreeva IP, Rubtsova MY, Lev AI, Novikova TS, Detusheva EV, Fursova NK, Dyatlov IA, Egorov AM. Int J Mol Sci; 2022 Feb 06; 23(3):. PubMed ID: 35163756 [Abstract] [Full Text] [Related]
33. New Delhi metallo-β-lactamase: structural insights into β-lactam recognition and inhibition. King DT, Worrall LJ, Gruninger R, Strynadka NC. J Am Chem Soc; 2012 Jul 18; 134(28):11362-5. PubMed ID: 22713171 [Abstract] [Full Text] [Related]
34. A modified bonded model approach for molecular dynamics simulations of New Delhi Metallo-β-lactamase. Eshtiwi AA, Rathbone DL. J Mol Graph Model; 2023 Jun 18; 121():108431. PubMed ID: 36827734 [Abstract] [Full Text] [Related]
35. A focused fragment library targeting the antibiotic resistance enzyme - Oxacillinase-48: Synthesis, structural evaluation and inhibitor design. Akhter S, Lund BA, Ismael A, Langer M, Isaksson J, Christopeit T, Leiros HS, Bayer A. Eur J Med Chem; 2018 Feb 10; 145():634-648. PubMed ID: 29348071 [Abstract] [Full Text] [Related]
36. Azetidinimines as a novel series of non-covalent broad-spectrum inhibitors of β-lactamases with submicromolar activities against carbapenemases KPC-2 (class A), NDM-1 (class B) and OXA-48 (class D). Romero E, Oueslati S, Benchekroun M, D'Hollander ACA, Ventre S, Vijayakumar K, Minard C, Exilie C, Tlili L, Retailleau P, Zavala A, Elisée E, Selwa E, Nguyen LA, Pruvost A, Naas T, Iorga BI, Dodd RH, Cariou K. Eur J Med Chem; 2021 Jul 05; 219():113418. PubMed ID: 33862516 [Abstract] [Full Text] [Related]
37. An integrated biophysical approach to discovering mechanisms of NDM-1 inhibition for several thiol-containing drugs. Fullington S, Cheng Z, Thomas C, Miller C, Yang K, Ju LC, Bergstrom A, Shurina BA, Bretz SL, Page RC, Tierney DL, Crowder MW. J Biol Inorg Chem; 2020 Aug 05; 25(5):717-727. PubMed ID: 32500360 [Abstract] [Full Text] [Related]
38. Metallo-β-lactamase inhibitors by bioisosteric replacement: Preparation, activity and binding. Skagseth S, Akhter S, Paulsen MH, Muhammad Z, Lauksund S, Samuelsen Ø, Leiros HS, Bayer A. Eur J Med Chem; 2017 Jul 28; 135():159-173. PubMed ID: 28445786 [Abstract] [Full Text] [Related]
39. Iminodiacetic Acid as a Novel Metal-Binding Pharmacophore for New Delhi Metallo-β-lactamase Inhibitor Development. Chen AY, Thomas CA, Thomas PW, Yang K, Cheng Z, Fast W, Crowder MW, Cohen SM. ChemMedChem; 2020 Jul 20; 15(14):1272-1282. PubMed ID: 32315115 [Abstract] [Full Text] [Related]