These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
129 related items for PubMed ID: 3372516
1. Volume enlargement and recovery of Na+-dependent amino acid transport in proteoliposomes derived from Ehrlich ascites cell membranes. McCormick JI, Johnstone RM. J Biol Chem; 1988 Jun 15; 263(17):8111-9. PubMed ID: 3372516 [Abstract] [Full Text] [Related]
2. Role of specific acidic lipids on the reconstitution of Na(+)-dependent amino acid transport in proteoliposomes derived from Ehrlich cell plasma membranes. Lin GR, McCormick JI, Dhe-Paganon S, Silvius JR, Johnstone RM. Biochemistry; 1990 May 15; 29(19):4575-81. PubMed ID: 2372542 [Abstract] [Full Text] [Related]
3. Effect of alkali cations on freeze-thaw-dependent reconstitution of amino acid transport from Ehrlich ascites cell plasma membrane. McCormick JI, Silvius JR, Johnstone RM. J Biol Chem; 1985 May 10; 260(9):5706-14. PubMed ID: 3988770 [Abstract] [Full Text] [Related]
4. Asymmetric reconstitution of the glucose transporter from Ehrlich ascites cell plasma membrane: role of alkali cations. McCormick JI, Johnstone RM. Arch Biochem Biophys; 1986 Jul 10; 248(1):379-89. PubMed ID: 3729423 [Abstract] [Full Text] [Related]
5. Uptake of amino acids in reconstituted vesicles derived from plasma membranes of Ehrlich ascites cells. Johnstone RM, Bardin C. J Cell Physiol; 1976 Dec 10; 89(4):801-4. PubMed ID: 1034639 [Abstract] [Full Text] [Related]
7. Molecular size of a Na(+)-dependent amino acid transporter in Ehrlich ascites cell plasma membranes estimated by radiation inactivation. McCormick JI, Jetté M, Potier M, Béliveau R, Johnstone RM. Biochemistry; 1991 Apr 16; 30(15):3704-9. PubMed ID: 2015226 [Abstract] [Full Text] [Related]
8. Evidence for an essential sulfhydryl group at the substrate binding site of the A-system transporter of Ehrlich cell plasma membranes. McCormick J, Johnstone RM. Biochem Cell Biol; 1990 Feb 16; 68(2):512-9. PubMed ID: 2160834 [Abstract] [Full Text] [Related]
9. Phospholipid composition modulates the Na+-Ca2+ exchange activity of cardiac sarcolemma in reconstituted vesicles. Vemuri R, Philipson KD. Biochim Biophys Acta; 1988 Jan 22; 937(2):258-68. PubMed ID: 3276350 [Abstract] [Full Text] [Related]
10. Simple and effective purification of a Na+-dependent amino acid transport system from Ehrlich ascites cell plasma membrane. McCormick JI, Johnstone RM. Proc Natl Acad Sci U S A; 1988 Nov 22; 85(21):7877-81. PubMed ID: 2847146 [Abstract] [Full Text] [Related]
11. Sodium-dependent neutral amino acid transport in native and reconstituted membrane vesicles from Ehrlich cells. Im WB, Spector AA. J Biol Chem; 1980 Jan 25; 255(2):764-70. PubMed ID: 6243286 [No Abstract] [Full Text] [Related]
12. Sodium-dependent amino acid transport in reconstituted membrane vesicles from Ehrlich ascites cell plasma membranes. Bardin C, Johnstone RM. J Biol Chem; 1978 Mar 10; 253(5):1725-32. PubMed ID: 564350 [Abstract] [Full Text] [Related]
13. Solubilization and reconstitution of hepatic System A-mediated amino acid transport. Preparation of proteoliposomes containing glucagon-stimulated transport activity. Bracy DS, Schenerman MA, Kilberg MS. Biochim Biophys Acta; 1987 May 12; 899(1):51-8. PubMed ID: 3567191 [Abstract] [Full Text] [Related]
14. The involvement of the membrane oxidoreduction system in stimulating amino acid uptake in Ehrlich ascites tumor cells. Yamamoto S, Kawasaki T. Biochim Biophys Acta; 1981 Jun 22; 644(2):192-200. PubMed ID: 7260073 [Abstract] [Full Text] [Related]
15. Reconstitution of (Na+ + K+)-ATPase proteoliposomes having the same turnover rate as the membranous enzyme. Yoda A, Clark AW, Yoda S. Biochim Biophys Acta; 1984 Dec 05; 778(2):332-40. PubMed ID: 6093885 [Abstract] [Full Text] [Related]
16. Reconstitution and partial purification of several Na+ cotransport systems from renal brush-border membranes. Properties of the L-glutamate transporter in proteoliposomes. Koepsell H, Korn K, Ferguson D, Menuhr H, Ollig D, Haase W. J Biol Chem; 1984 May 25; 259(10):6548-58. PubMed ID: 6725262 [Abstract] [Full Text] [Related]
17. Na+-dependent amino acid transport in plasma membrane vesicles from Ehrlich ascites cells. Colombini M, Johnstone RM. J Membr Biol; 1974 May 25; 15(3):261-76. PubMed ID: 4838040 [No Abstract] [Full Text] [Related]
18. Reconstitution of the human placental 5-hydroxytryptamine transporter in a catalytically active form after detergent solubilization. Ramamoorthy S, Cool DR, Leibach FH, Mahesh VB, Ganapathy V. Biochem J; 1992 Aug 15; 286 ( Pt 1)(Pt 1):89-95. PubMed ID: 1520288 [Abstract] [Full Text] [Related]
19. Effect of phospholipid composition on activity of sodium-dependent leucine transport system in Pseudomonas aeruginosa. Uratani Y, Aiyama A. J Biol Chem; 1986 Apr 25; 261(12):5450-4. PubMed ID: 3082885 [Abstract] [Full Text] [Related]
20. Cholesterol is required for the reconstruction of the sodium- and chloride-coupled, gamma-aminobutyric acid transporter from rat brain. Shouffani A, Kanner BI. J Biol Chem; 1990 Apr 15; 265(11):6002-8. PubMed ID: 2318845 [Abstract] [Full Text] [Related] Page: [Next] [New Search]