These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


187 related items for PubMed ID: 33729441

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Local hemodynamics at the rupture point of cerebral aneurysms determined by computational fluid dynamics analysis.
    Omodaka S, Sugiyama S, Inoue T, Funamoto K, Fujimura M, Shimizu H, Hayase T, Takahashi A, Tominaga T.
    Cerebrovasc Dis; 2012; 34(2):121-9. PubMed ID: 22965244
    [Abstract] [Full Text] [Related]

  • 3. Newtonian viscosity model could overestimate wall shear stress in intracranial aneurysm domes and underestimate rupture risk.
    Xiang J, Tremmel M, Kolega J, Levy EI, Natarajan SK, Meng H.
    J Neurointerv Surg; 2012 Sep; 4(5):351-7. PubMed ID: 21990529
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. The effect of inlet waveforms on computational hemodynamics of patient-specific intracranial aneurysms.
    Xiang J, Siddiqui AH, Meng H.
    J Biomech; 2014 Dec 18; 47(16):3882-90. PubMed ID: 25446264
    [Abstract] [Full Text] [Related]

  • 8. Unsteady wall shear stress analysis from image-based computational fluid dynamic aneurysm models under Newtonian and Casson rheological models.
    Castro MA, Ahumada Olivares MC, Putman CM, Cebral JR.
    Med Biol Eng Comput; 2014 Oct 18; 52(10):827-39. PubMed ID: 25154981
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12. Realistic non-Newtonian viscosity modelling highlights hemodynamic differences between intracranial aneurysms with and without surface blebs.
    Hippelheuser JE, Lauric A, Cohen AD, Malek AM.
    J Biomech; 2014 Nov 28; 47(15):3695-703. PubMed ID: 25446269
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14. Exploring potential association between flow instability and rupture in patients with matched-pairs of ruptured-unruptured intracranial aneurysms.
    Xu L, Gu L, Liu H.
    Biomed Eng Online; 2016 Dec 28; 15(Suppl 2):166. PubMed ID: 28155701
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Stagnation and complex flow in ruptured cerebral aneurysms: a possible association with hemostatic pattern.
    Tsuji M, Ishikawa T, Ishida F, Furukawa K, Miura Y, Shiba M, Sano T, Tanemura H, Umeda Y, Shimosaka S, Suzuki H.
    J Neurosurg; 2017 May 28; 126(5):1566-1572. PubMed ID: 27257837
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 10.