These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


118 related items for PubMed ID: 33737100

  • 1. Fabrication of cell penetrating peptide-conjugated bacterial cellulose nanofibrils with remarkable skin adhesion and water retention performance.
    Kim S, Kang JY, Balance WC, Sutton BP, Shin DH, Jang KH, Shin M, Kong H, Kim JW.
    Int J Pharm; 2021 May 01; 600():120476. PubMed ID: 33737100
    [Abstract] [Full Text] [Related]

  • 2. TEMPO-oxidized cellulose nanofibers.
    Isogai A, Saito T, Fukuzumi H.
    Nanoscale; 2011 Jan 01; 3(1):71-85. PubMed ID: 20957280
    [Abstract] [Full Text] [Related]

  • 3. Molecular mass and molecular-mass distribution of TEMPO-oxidized celluloses and TEMPO-oxidized cellulose nanofibrils.
    Hiraoki R, Ono Y, Saito T, Isogai A.
    Biomacromolecules; 2015 Feb 09; 16(2):675-81. PubMed ID: 25584418
    [Abstract] [Full Text] [Related]

  • 4. Cellulose Nanofibers Prepared Using the TEMPO/Laccase/O2 System.
    Jiang J, Ye W, Liu L, Wang Z, Fan Y, Saito T, Isogai A.
    Biomacromolecules; 2017 Jan 09; 18(1):288-294. PubMed ID: 27995786
    [Abstract] [Full Text] [Related]

  • 5. Multifunctional coating films by layer-by-layer deposition of cellulose and chitin nanofibrils.
    Qi ZD, Saito T, Fan Y, Isogai A.
    Biomacromolecules; 2012 Feb 13; 13(2):553-8. PubMed ID: 22251371
    [Abstract] [Full Text] [Related]

  • 6. Bacterial cellulose nanofibrils-reinforced composite hydrogels for mechanical compression-responsive on-demand drug release.
    Park D, Kim JW, Shin K, Kim JW.
    Carbohydr Polym; 2021 Nov 15; 272():118459. PubMed ID: 34420719
    [Abstract] [Full Text] [Related]

  • 7. Cellulose nanofibers prepared by TEMPO-mediated oxidation of native cellulose.
    Saito T, Kimura S, Nishiyama Y, Isogai A.
    Biomacromolecules; 2007 Aug 15; 8(8):2485-91. PubMed ID: 17630692
    [Abstract] [Full Text] [Related]

  • 8. Structure retention of proteins interacting electrostatically with TEMPO-oxidized cellulose nanofiber surface.
    Yamaguchi A, Sakamoto H, Kitamura T, Hashimoto M, Suye SI.
    Colloids Surf B Biointerfaces; 2019 Nov 01; 183():110392. PubMed ID: 31394423
    [Abstract] [Full Text] [Related]

  • 9. Relationship between length and degree of polymerization of TEMPO-oxidized cellulose nanofibrils.
    Shinoda R, Saito T, Okita Y, Isogai A.
    Biomacromolecules; 2012 Mar 12; 13(3):842-9. PubMed ID: 22276990
    [Abstract] [Full Text] [Related]

  • 10. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide.
    Trovatti E, Tang H, Hajian A, Meng Q, Gandini A, Berglund LA, Zhou Q.
    Carbohydr Polym; 2018 Feb 01; 181():256-263. PubMed ID: 29253970
    [Abstract] [Full Text] [Related]

  • 11. Cellulose nanofibrils prepared from softwood cellulose by TEMPO/NaClO/NaClO₂ systems in water at pH 4.8 or 6.8.
    Tanaka R, Saito T, Isogai A.
    Int J Biol Macromol; 2012 Oct 01; 51(3):228-34. PubMed ID: 22617623
    [Abstract] [Full Text] [Related]

  • 12. Hydrophobically Modified Cellulose Nanofibers-Enveloped Solid Lipid Microparticles for Improved Antioxidant Cargo Retention.
    Bae J, Seo HM, Shin K, Choi J, Lee DR, Jiang Z, Shen D, Kim JW.
    Macromol Rapid Commun; 2022 Apr 01; 43(7):e2100917. PubMed ID: 35213061
    [Abstract] [Full Text] [Related]

  • 13. Surface imprinted bacterial cellulose nanofibers for hemoglobin purification.
    Bakhshpour M, Tamahkar E, Andaç M, Denizli A.
    Colloids Surf B Biointerfaces; 2017 Oct 01; 158():453-459. PubMed ID: 28728087
    [Abstract] [Full Text] [Related]

  • 14. Characterization of Concentration-Dependent Gelation Behavior of Aqueous 2,2,6,6-Tetramethylpiperidine-1-oxyl-Cellulose Nanocrystal Dispersions Using Dynamic Light Scattering.
    Zhou Y, Fujisawa S, Saito T, Isogai A.
    Biomacromolecules; 2019 Feb 11; 20(2):750-757. PubMed ID: 30557007
    [Abstract] [Full Text] [Related]

  • 15. Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation.
    Ishii D, Saito T, Isogai A.
    Biomacromolecules; 2011 Mar 14; 12(3):548-50. PubMed ID: 21261299
    [Abstract] [Full Text] [Related]

  • 16. Integrating direct reuse and extraction recovery of TEMPO for production of cellulose nanofibrils.
    Chen S, Yue N, Cui M, Penkova A, Huang R, Qi W, He Z, Su R.
    Carbohydr Polym; 2022 Oct 15; 294():119803. PubMed ID: 35868763
    [Abstract] [Full Text] [Related]

  • 17. Transparent bionanocomposite films based on chitosan and TEMPO-oxidized cellulose nanofibers with enhanced mechanical and barrier properties.
    Soni B, Hassan EB, Schilling MW, Mahmoud B.
    Carbohydr Polym; 2016 Oct 20; 151():779-789. PubMed ID: 27474625
    [Abstract] [Full Text] [Related]

  • 18. TEMPO-oxidized bacterial cellulose nanofiber membranes as high-performance separators for lithium-ion batteries.
    Huang C, Ji H, Yang Y, Guo B, Luo L, Meng Z, Fan L, Xu J.
    Carbohydr Polym; 2020 Feb 15; 230():115570. PubMed ID: 31887969
    [Abstract] [Full Text] [Related]

  • 19. Synthesis of silver nanoparticles templated by TEMPO-mediated oxidized bacterial cellulose nanofibers.
    Ifuku S, Tsuji M, Morimoto M, Saimoto H, Yano H.
    Biomacromolecules; 2009 Sep 14; 10(9):2714-7. PubMed ID: 19653675
    [Abstract] [Full Text] [Related]

  • 20. On the morphology of cellulose nanofibrils obtained by TEMPO-mediated oxidation and mechanical treatment.
    Gamelas JA, Pedrosa J, Lourenço AF, Mutjé P, González I, Chinga-Carrasco G, Singh G, Ferreira PJ.
    Micron; 2015 May 14; 72():28-33. PubMed ID: 25768897
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.