These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
238 related items for PubMed ID: 33742532
41. Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography-Based Microangiography. Chen CL, Zhang A, Bojikian KD, Wen JC, Zhang Q, Xin C, Mudumbai RC, Johnstone MA, Chen PP, Wang RK. Invest Ophthalmol Vis Sci; 2016 Jul 01; 57(9):OCT475-85. PubMed ID: 27442341 [Abstract] [Full Text] [Related]
42. Ability of cirrus high-definition spectral-domain optical coherence tomography clock-hour, deviation, and thickness maps in detecting photographic retinal nerve fiber layer abnormalities. Hwang YH, Kim YY, Kim HK, Sohn YH. Ophthalmology; 2013 Jul 01; 120(7):1380-7. PubMed ID: 23541761 [Abstract] [Full Text] [Related]
43. Detection of progression of glaucomatous retinal nerve fibre layer defects using optical coherence tomography-guided progression analysis. Hwang YH, Kim MK, Wi JM, Chung JK, Lee KB. Clin Exp Optom; 2018 Jan 01; 101(1):100-108. PubMed ID: 28543741 [Abstract] [Full Text] [Related]
44. Quantitative Analysis of Microvasculature in Macular and Peripapillary Regions in Early Primary Open-Angle Glaucoma. Lu P, Xiao H, Liang C, Xu Y, Ye D, Huang J. Curr Eye Res; 2020 May 01; 45(5):629-635. PubMed ID: 31587582 [Abstract] [Full Text] [Related]
45. Development of Topographic Scoring System for Identifying Glaucoma in Myopic Eyes: A Spectral-Domain OCT Study. Baek SU, Kim KE, Kim YK, Park KH, Jeoung JW. Ophthalmology; 2018 Nov 01; 125(11):1710-1719. PubMed ID: 29887333 [Abstract] [Full Text] [Related]
46. Quantitative assessment of retinal nerve fiber layer defect depth using spectral-domain optical coherence tomography. Suh MH, Yoo BW, Kim JY, Choi YJ, Park KH, Kim HC. Ophthalmology; 2014 Jul 01; 121(7):1333-40. PubMed ID: 24612980 [Abstract] [Full Text] [Related]
47. Optic disc hemorrhage may be associated with retinal nerve fiber loss in otherwise normal eyes. Jeoung JW, Park KH, Kim JM, Kang SH, Kang JH, Kim TW, Kim DM. Ophthalmology; 2008 Dec 01; 115(12):2132-40. PubMed ID: 19041474 [Abstract] [Full Text] [Related]
48. Diagnostic capability of optical coherence tomography in evaluating the degree of glaucomatous retinal nerve fiber damage. Sihota R, Sony P, Gupta V, Dada T, Singh R. Invest Ophthalmol Vis Sci; 2006 May 01; 47(5):2006-10. PubMed ID: 16639009 [Abstract] [Full Text] [Related]
49. The Topographic Relationship Between Choroidal Microvascular Dropout and Glaucomatous Damage in Primary Angle-Closure Glaucoma. Tan L, Ma D, He J, Wang H, Chen S, Lin Y. Transl Vis Sci Technol; 2022 Oct 03; 11(10):20. PubMed ID: 36239967 [Abstract] [Full Text] [Related]
50. Comparison of the Progression of Localized Retinal Nerve Fiber Layer Defects in Red-free Fundus Photograph, En Face Structural Image, and OCT Angiography Image. Ji MJ, Park JH, Yoo C, Kim YY. J Glaucoma; 2020 Aug 03; 29(8):698-703. PubMed ID: 32398586 [Abstract] [Full Text] [Related]
51. Correlation between nerve fibre layer thickness measured with spectral domain OCT and visual field in patients with different stages of glaucoma. Cvenkel B, Kontestabile AS. Graefes Arch Clin Exp Ophthalmol; 2011 Apr 03; 249(4):575-84. PubMed ID: 20949277 [Abstract] [Full Text] [Related]
52. Detection of Progressive Glaucomatous Optic Nerve Damage on Fundus Photographs with Deep Learning. Medeiros FA, Jammal AA, Mariottoni EB. Ophthalmology; 2021 Mar 03; 128(3):383-392. PubMed ID: 32735906 [Abstract] [Full Text] [Related]
53. Optic nerve head morphology in primary open-angle glaucoma and nonarteritic anterior ischaemic optic neuropathy measured with spectral domain optical coherence tomography. Resch H, Mitsch C, Pereira I, Schwarzhans F, Wasserman L, Hommer A, Reitner A, Vass C. Acta Ophthalmol; 2018 Dec 03; 96(8):e1018-e1024. PubMed ID: 30240137 [Abstract] [Full Text] [Related]
54. Patterns of glaucoma progression in retinal nerve fiber and macular ganglion cell-inner plexiform layer in spectral-domain optical coherence tomography. Kim HJ, Jeoung JW, Yoo BW, Kim HC, Park KH. Jpn J Ophthalmol; 2017 Jul 03; 61(4):324-333. PubMed ID: 28374270 [Abstract] [Full Text] [Related]
55. Topographic localization of macular retinal ganglion cell loss associated with localized peripapillary retinal nerve fiber layer defect. Kim KE, Park KH, Yoo BW, Jeoung JW, Kim DM, Kim HC. Invest Ophthalmol Vis Sci; 2014 May 06; 55(6):3501-8. PubMed ID: 24801510 [Abstract] [Full Text] [Related]
56. Comparison of retinal ganglion cell-related layer asymmetry between early glaucoma eyes with superior and inferior hemiretina damage. Saito H, Iwase A, Araie M. Br J Ophthalmol; 2020 May 06; 104(5):655-659. PubMed ID: 31434647 [Abstract] [Full Text] [Related]
57. Reduction of Optic Disc Microvasculature and Retinal Nerve Fiber Layer Thinning in Patients With Glaucoma. Suh MH, Weinreb RN, Zangwill LM, Walker E. Am J Ophthalmol; 2024 Sep 06; 265():224-235. PubMed ID: 38703801 [Abstract] [Full Text] [Related]
58. Retinal Nerve Fiber Layer Damage in Young Myopic Eyes With Optic Disc Torsion and Glaucomatous Hemifield Defect. Lee JE, Lee JY, Kook MS. J Glaucoma; 2017 Jan 06; 26(1):77-86. PubMed ID: 27300647 [Abstract] [Full Text] [Related]
59. Usefulness of optical coherence tomography parameters of the optic disc and the retinal nerve fiber layer to differentiate glaucomatous, ocular hypertensive, and normal eyes. Anton A, Moreno-Montañes J, Blázquez F, Alvarez A, Martín B, Molina B. J Glaucoma; 2007 Jan 06; 16(1):1-8. PubMed ID: 17224742 [Abstract] [Full Text] [Related]
60. Characteristics of Retinal Nerve Fiber Layer Defect in Nonglaucomatous Eyes With Type II Diabetes. Jeon SJ, Kwon JW, La TY, Park CK, Choi JA. Invest Ophthalmol Vis Sci; 2016 Aug 01; 57(10):4008-15. PubMed ID: 27490320 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]