These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
217 related items for PubMed ID: 33744663
1. Preparation of β-lactoglobulin/gum arabic complex nanoparticles for encapsulation and controlled release of EGCG in simulated gastrointestinal digestion model. Gao J, Mao Y, Xiang C, Cao M, Ren G, Wang K, Ma X, Wu D, Xie H. Food Chem; 2021 Aug 30; 354():129516. PubMed ID: 33744663 [Abstract] [Full Text] [Related]
2. Controlled release and antioxidant activity of chitosan and β-lactoglobulin complex nanoparticles loaded with epigallocatechin gallate. Dai W, Ruan C, Sun Y, Gao X, Liang J. Colloids Surf B Biointerfaces; 2020 Apr 30; 188():110802. PubMed ID: 31958618 [Abstract] [Full Text] [Related]
3. Encapsulation of EGCG by Zein-Gum Arabic Complex Nanoparticles and In Vitro Simulated Digestion of Complex Nanoparticles. Jin J, Liu C, Tong H, Sun Y, Huang M, Ren G, Xie H. Foods; 2022 Jul 19; 11(14):. PubMed ID: 35885374 [Abstract] [Full Text] [Related]
4. Preservation of (-)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Li B, Du W, Jin J, Du Q. J Agric Food Chem; 2012 Apr 04; 60(13):3477-84. PubMed ID: 22409289 [Abstract] [Full Text] [Related]
5. Formation and Characterization of β-Lactoglobulin and Gum Arabic Complexes: the Role of pH. Wang Z, Liu J, Gao J, Cao M, Ren G, Xie H, Yao M. Molecules; 2020 Aug 25; 25(17):. PubMed ID: 32854454 [Abstract] [Full Text] [Related]
6. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin-epigallocatechin-3-gallate complexes. Lestringant P, Guri A, Gülseren I, Relkin P, Corredig M. J Agric Food Chem; 2014 Aug 20; 62(33):8357-64. PubMed ID: 25077960 [Abstract] [Full Text] [Related]
7. Fabrication of Zein-Lecithin-EGCG complex nanoparticles: Characterization, controlled release in simulated gastrointestinal digestion. Xie H, Liu C, Gao J, Shi J, Ni F, Luo X, He Y, Ren G, Luo Z. Food Chem; 2021 Dec 15; 365():130542. PubMed ID: 34265644 [Abstract] [Full Text] [Related]
8. Stabilization mechanism of oil-in-water emulsions by β-lactoglobulin and gum arabic. Bouyer E, Mekhloufi G, Le Potier I, de Kerdaniel Tdu F, Grossiord JL, Rosilio V, Agnely F. J Colloid Interface Sci; 2011 Feb 15; 354(2):467-77. PubMed ID: 21145063 [Abstract] [Full Text] [Related]
9. Modulation of gastrointestinal digestion of β-lactoglobulin and micellar casein following binding by (-)-epigallocatechin-3-gallate (EGCG) and green tea flavanols. Dönmez Ö, Mogol BA, Gökmen V, Tang N, Andersen ML, Chatterton DEW. Food Funct; 2020 Jul 01; 11(7):6038-6053. PubMed ID: 32558864 [Abstract] [Full Text] [Related]
10. Complexation of β-lactoglobulin with gum arabic: Effect of heat treatment and enhanced encapsulation efficiency. Cao M, Gao J, Li Y, Liu C, Shi J, Ni F, Ren G, Xie H. Food Sci Nutr; 2021 Mar 01; 9(3):1399-1409. PubMed ID: 33747454 [Abstract] [Full Text] [Related]
11. Effect of metal ions on the binding reaction of (-)-epigallocatechin gallate to β-lactoglobulin. Zhang L, Sahu ID, Xu M, Wang Y, Hu X. Food Chem; 2017 Apr 15; 221():1923-1929. PubMed ID: 27979181 [Abstract] [Full Text] [Related]
12. Covalent modification of β-lactoglobulin by (-)-epigallocatechin-3-gallate results in a novel antioxidant molecule. Tao F, Xiao C, Chen W, Zhang Y, Pan J, Jia Z. Int J Biol Macromol; 2019 Apr 01; 126():1186-1191. PubMed ID: 30615967 [Abstract] [Full Text] [Related]
13. Galloyl moieties enhance the binding of (-)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis. Zhang L, Wang Y, Xu M, Hu X. Food Chem; 2017 Dec 15; 237():39-45. PubMed ID: 28764011 [Abstract] [Full Text] [Related]
14. Co-encapsulation of (-)-epigallocatechin-3-gallate and piceatannol/oxyresveratrol in β-lactoglobulin: effect of ligand-protein binding on the antioxidant activity, stability, solubility and cytotoxicity. Liu T, Liu M, Liu H, Ren Y, Zhao Y, Yan H, Wang Q, Zhang N, Ding Z, Wang Z. Food Funct; 2021 Aug 21; 12(16):7126-7144. PubMed ID: 34180492 [Abstract] [Full Text] [Related]
15. Biological macromolecule delivery system fabricated using zein and gum arabic to control the release rate of encapsulated tocopherol during in vitro digestion. Li J, Xu X, Chen Z, Wang T, Wang L, Zhong Q. Food Res Int; 2018 Dec 21; 114():251-257. PubMed ID: 30361023 [Abstract] [Full Text] [Related]
16. Analysis of β-lactoglobulin-epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic-protein interactions. Qie X, Chen Y, Quan W, Wang Z, Zeng M, Qin F, Chen J, He Z. Food Funct; 2020 May 01; 11(5):3867-3878. PubMed ID: 32426776 [Abstract] [Full Text] [Related]
17. Synthesis and controlled-release properties of chitosan/β-Lactoglobulin nanoparticles as carriers for oral administration of epigallocatechin gallate. Liang J, Yan H, Yang HJ, Kim HW, Wan X, Lee J, Ko S. Food Sci Biotechnol; 2016 May 01; 25(6):1583-1590. PubMed ID: 30263448 [Abstract] [Full Text] [Related]
18. Nano-encapsulation of epigallocatechin gallate in the ferritin-chitosan double shells: Simulated digestion and absorption evaluation. Yang R, Liu Y, Gao Y, Yang Z, Zhao S, Wang Y, Blanchard C, Zhou Z. Food Res Int; 2018 Jun 01; 108():1-7. PubMed ID: 29735037 [Abstract] [Full Text] [Related]
19. Antioxidant activity, storage stability and in vitro release of epigallocatechin-3-gallate (EGCG) encapsulated in hordein nanoparticles. Song H, Wang Q, He A, Li S, Guan X, Hu Y, Feng S. Food Chem; 2022 Sep 15; 388():132903. PubMed ID: 35436635 [Abstract] [Full Text] [Related]
20. Niosomes Consisting of Tween-60 and Cholesterol Improve the Chemical Stability and Antioxidant Activity of (-)-Epigallocatechin Gallate under Intestinal Tract Conditions. Liang R, Chen L, Yokoyama W, Williams PA, Zhong F. J Agric Food Chem; 2016 Dec 07; 64(48):9180-9188. PubMed ID: 27933988 [Abstract] [Full Text] [Related] Page: [Next] [New Search]