These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


307 related items for PubMed ID: 33748617

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Bimetallic Au/Ag Core-Shell Superstructures with Tunable Surface Plasmon Resonance in the Near-Infrared Region and High Performance Surface-Enhanced Raman Scattering.
    Dai L, Song L, Huang Y, Zhang L, Lu X, Zhang J, Chen T.
    Langmuir; 2017 Jun 06; 33(22):5378-5384. PubMed ID: 28502174
    [Abstract] [Full Text] [Related]

  • 3. Fabricating a Homogeneously Alloyed AuAg Shell on Au Nanorods to Achieve Strong, Stable, and Tunable Surface Plasmon Resonances.
    Huang J, Zhu Y, Liu C, Zhao Y, Liu Z, Hedhili MN, Fratalocchi A, Han Y.
    Small; 2015 Oct 21; 11(39):5214-21. PubMed ID: 26270384
    [Abstract] [Full Text] [Related]

  • 4. Synthesis of Au@Ag core-shell nanorods with tunable optical properties.
    Miryousefi N, Varmazyad M, Ghasemi F.
    Nanotechnology; 2024 Jul 12; 35(39):. PubMed ID: 38865976
    [Abstract] [Full Text] [Related]

  • 5. Fully alloyed metal nanorods with highly tunable properties.
    Albrecht W, van der Hoeven JE, Deng TS, de Jongh PE, van Blaaderen A.
    Nanoscale; 2017 Feb 23; 9(8):2845-2851. PubMed ID: 28169378
    [Abstract] [Full Text] [Related]

  • 6. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell.
    Ma Y, Zhou J, Zou W, Jia Z, Petti L, Mormile P.
    J Nanosci Nanotechnol; 2014 Jun 23; 14(6):4245-50. PubMed ID: 24738378
    [Abstract] [Full Text] [Related]

  • 7. The morphology regulation and plasmonic spectral properties of Au@AuAg yolk-shell nanorods with controlled interior gap.
    Zhu J, Zhang S, Weng GJ, Li JJ, Zhao JW.
    Spectrochim Acta A Mol Biomol Spectrosc; 2020 Aug 05; 236():118343. PubMed ID: 32302959
    [Abstract] [Full Text] [Related]

  • 8. Tunable and Linker Free Nanogaps in Core-Shell Plasmonic Nanorods for Selective and Quantitative Detection of Circulating Tumor Cells by SERS.
    Zhang Y, Yang P, Habeeb Muhammed MA, Alsaiari SK, Moosa B, Almalik A, Kumar A, Ringe E, Khashab NM.
    ACS Appl Mater Interfaces; 2017 Nov 01; 9(43):37597-37605. PubMed ID: 28990755
    [Abstract] [Full Text] [Related]

  • 9. Crystal overgrowth on gold nanorods: tuning the shape, facet, aspect ratio, and composition of the nanorods.
    Song JH, Kim F, Kim D, Yang P.
    Chemistry; 2005 Jan 21; 11(3):910-6. PubMed ID: 15593133
    [Abstract] [Full Text] [Related]

  • 10. Shell thickness-controlled synthesis of Au@Ag core-shell nanorods structure for contaminants sensing by SERS.
    Thi Dang L, Le Nguyen H, Van Pham H, Nguyen MTT.
    Nanotechnology; 2021 Nov 24; 33(7):. PubMed ID: 34425570
    [Abstract] [Full Text] [Related]

  • 11. Chiral Assembly of Gold-Silver Core-Shell Plasmonic Nanorods on DNA Origami with Strong Optical Activity.
    Nguyen L, Dass M, Ober MF, Besteiro LV, Wang ZM, Nickel B, Govorov AO, Liedl T, Heuer-Jungemann A.
    ACS Nano; 2020 Jun 23; 14(6):7454-7461. PubMed ID: 32459462
    [Abstract] [Full Text] [Related]

  • 12. Light-Scattering Simulations from Spherical Bimetallic Core-Shell Nanoparticles.
    Ruffino F.
    Micromachines (Basel); 2021 Mar 26; 12(4):. PubMed ID: 33810270
    [Abstract] [Full Text] [Related]

  • 13. Au@Ag core-shell nanocubes: epitaxial growth synthesis and surface-enhanced Raman scattering performance.
    Liu Y, Zhou J, Wang B, Jiang T, Ho HP, Petti L, Mormile P.
    Phys Chem Chem Phys; 2015 Mar 14; 17(10):6819-26. PubMed ID: 25670345
    [Abstract] [Full Text] [Related]

  • 14. Core-size-dependent catalytic properties of bimetallic Au/Ag core-shell nanoparticles.
    Haldar KK, Kundu S, Patra A.
    ACS Appl Mater Interfaces; 2014 Dec 24; 6(24):21946-53. PubMed ID: 25456348
    [Abstract] [Full Text] [Related]

  • 15. Symmetric and asymmetric overgrowth of a Ag shell onto gold nanorods assisted by Pt pre-deposition.
    Zhang Q, Deng TS, Wei MZ, Chen X, Cheng Z, Li S, Gu YJ.
    RSC Adv; 2021 Oct 25; 11(55):34516-34524. PubMed ID: 35494784
    [Abstract] [Full Text] [Related]

  • 16. NIR-Active Plasmonic Gold Nanocapsules Synthesized Using Thermally Induced Seed Twinning for Surface-Enhanced Raman Scattering Applications.
    Singh P, König TAF, Jaiswal A.
    ACS Appl Mater Interfaces; 2018 Nov 14; 10(45):39380-39390. PubMed ID: 30345737
    [Abstract] [Full Text] [Related]

  • 17. Plasmonic enhancements of photocatalytic activity of Pt/n-Si/Ag photodiodes using Au/Ag core/shell nanorods.
    Qu Y, Cheng R, Su Q, Duan X.
    J Am Chem Soc; 2011 Oct 26; 133(42):16730-3. PubMed ID: 21961900
    [Abstract] [Full Text] [Related]

  • 18. Multifunctional Au@Ag@SiO2 Core-Shell-Shell Nanoparticles for Metal-Enhanced Fluorescence, Surface-Enhanced Raman Scattering, and Photocatalysis Applications.
    Dong L, Liu B, Maenosono S, Yang J.
    Langmuir; 2023 Jan 31; 39(4):1593-1599. PubMed ID: 36668988
    [Abstract] [Full Text] [Related]

  • 19. Mesoporous SnO2-coated metal nanoparticles with enhanced catalytic efficiency.
    Zhou N, Polavarapu L, Wang Q, Xu QH.
    ACS Appl Mater Interfaces; 2015 Mar 04; 7(8):4844-50. PubMed ID: 25674821
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 16.