These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


241 related items for PubMed ID: 33753487

  • 21. Quantifying the Initial Unfolding of Bacteriorhodopsin Reveals Retinal Stabilization.
    Yu H, Heenan PR, Edwards DT, Uyetake L, Perkins TT.
    Angew Chem Int Ed Engl; 2019 Feb 04; 58(6):1710-1713. PubMed ID: 30556941
    [Abstract] [Full Text] [Related]

  • 22. Unfolding pathways of native bacteriorhodopsin depend on temperature.
    Janovjak H, Kessler M, Oesterhelt D, Gaub H, Müller DJ.
    EMBO J; 2003 Oct 01; 22(19):5220-9. PubMed ID: 14517259
    [Abstract] [Full Text] [Related]

  • 23. Kinetics of an individual transmembrane helix during bacteriorhodopsin folding.
    Compton EL, Farmer NA, Lorch M, Mason JM, Moreton KM, Booth PJ.
    J Mol Biol; 2006 Mar 17; 357(1):325-38. PubMed ID: 16426635
    [Abstract] [Full Text] [Related]

  • 24. Role of trimer-trimer interaction of bacteriorhodopsin studied by optical spectroscopy and high-speed atomic force microscopy.
    Yamashita H, Inoue K, Shibata M, Uchihashi T, Sasaki J, Kandori H, Ando T.
    J Struct Biol; 2013 Oct 17; 184(1):2-11. PubMed ID: 23462099
    [Abstract] [Full Text] [Related]

  • 25. Proline residues in transmembrane alpha helices affect the folding of bacteriorhodopsin.
    Lu H, Marti T, Booth PJ.
    J Mol Biol; 2001 Apr 27; 308(2):437-46. PubMed ID: 11327778
    [Abstract] [Full Text] [Related]

  • 26. Sequential unfolding of individual helices of bacterioopsin observed in molecular dynamics simulations of extraction from the purple membrane.
    Seeber M, Fanelli F, Paci E, Caflisch A.
    Biophys J; 2006 Nov 01; 91(9):3276-84. PubMed ID: 16861280
    [Abstract] [Full Text] [Related]

  • 27. Probing origins of molecular interactions stabilizing the membrane proteins halorhodopsin and bacteriorhodopsin.
    Cisneros DA, Oesterhelt D, Müller DJ.
    Structure; 2005 Feb 01; 13(2):235-42. PubMed ID: 15698567
    [Abstract] [Full Text] [Related]

  • 28. Thermodynamic stability of bacteriorhodopsin mutants measured relative to the bacterioopsin unfolded state.
    Cao Z, Schlebach JP, Park C, Bowie JU.
    Biochim Biophys Acta; 2012 Apr 01; 1818(4):1049-54. PubMed ID: 21880269
    [Abstract] [Full Text] [Related]

  • 29. Electrostatic and steric interactions determine bacteriorhodopsin single-molecule biomechanics.
    Voïtchovsky K, Contera SA, Ryan JF.
    Biophys J; 2007 Sep 15; 93(6):2024-37. PubMed ID: 17513362
    [Abstract] [Full Text] [Related]

  • 30. Crystallinity of purple membranes comprising the chloride-pumping bacteriorhodopsin variant D85T and its modulation by pH and salinity.
    Rhinow D, Chizhik I, Baumann RP, Noll F, Hampp N.
    J Phys Chem B; 2010 Nov 25; 114(46):15424-8. PubMed ID: 21033713
    [Abstract] [Full Text] [Related]

  • 31. Pulling single bacteriorhodopsin out of a membrane: Comparison of simulation and experiment.
    Cieplak M, Filipek S, Janovjak H, Krzyśko KA.
    Biochim Biophys Acta; 2006 Apr 25; 1758(4):537-44. PubMed ID: 16678120
    [Abstract] [Full Text] [Related]

  • 32. Stable folding core in the folding transition state of an alpha-helical integral membrane protein.
    Curnow P, Di Bartolo ND, Moreton KM, Ajoje OO, Saggese NP, Booth PJ.
    Proc Natl Acad Sci U S A; 2011 Aug 23; 108(34):14133-8. PubMed ID: 21831834
    [Abstract] [Full Text] [Related]

  • 33. Mechanical Unfolding and Refolding of Single Membrane Proteins by Atomic Force Microscopy.
    Ritzmann N, Thoma J.
    Methods Mol Biol; 2020 Aug 23; 2127():359-372. PubMed ID: 32112333
    [Abstract] [Full Text] [Related]

  • 34. Stability of bacteriorhodopsin alpha-helices and loops analyzed by single-molecule force spectroscopy.
    Müller DJ, Kessler M, Oesterhelt F, Möller C, Oesterhelt D, Gaub H.
    Biophys J; 2002 Dec 23; 83(6):3578-88. PubMed ID: 12496125
    [Abstract] [Full Text] [Related]

  • 35. Modulation of folding and assembly of the membrane protein bacteriorhodopsin by intermolecular forces within the lipid bilayer.
    Curran AR, Templer RH, Booth PJ.
    Biochemistry; 1999 Jul 20; 38(29):9328-36. PubMed ID: 10413507
    [Abstract] [Full Text] [Related]

  • 36. Refolding of bacteriorhodopsin in lipid bilayers. A thermodynamically controlled two-stage process.
    Popot JL, Gerchman SE, Engelman DM.
    J Mol Biol; 1987 Dec 20; 198(4):655-76. PubMed ID: 3430624
    [Abstract] [Full Text] [Related]

  • 37. Conformation and dynamics changes of bacteriorhodopsin and its D85N mutant in the absence of 2D crystalline lattice as revealed by site-directed 13C NMR.
    Yamamoto K, Tuzi S, Saitô H, Kawamura I, Naito A.
    Biochim Biophys Acta; 2006 Feb 20; 1758(2):181-9. PubMed ID: 16542636
    [Abstract] [Full Text] [Related]

  • 38. Engineered bacteriorhodopsin: a molecular scale potential switch.
    Patil AV, Premaraban T, Berthoumieu O, Watts A, Davis JJ.
    Chemistry; 2012 Apr 27; 18(18):5632-6. PubMed ID: 22454208
    [Abstract] [Full Text] [Related]

  • 39. Molecular force modulation spectroscopy revealing the dynamic response of single bacteriorhodopsins.
    Janovjak H, Müller DJ, Humphris AD.
    Biophys J; 2005 Feb 27; 88(2):1423-31. PubMed ID: 15574708
    [Abstract] [Full Text] [Related]

  • 40. Comparison of bacteriorhodopsin/phospholipid interactions in DMPC and DMPG bilayers: an electron spin resonance spectroscopy and freeze-fracture electron microscopy study.
    Gale P.
    Biochem Biophys Res Commun; 1993 Oct 29; 196(2):879-84. PubMed ID: 8240365
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.