These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


180 related items for PubMed ID: 33756263

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3. Steeper posterior tibial slope markedly increases ACL force in both active gait and passive knee joint under compression.
    Marouane H, Shirazi-Adl A, Adouni M, Hashemi J.
    J Biomech; 2014 Apr 11; 47(6):1353-9. PubMed ID: 24576586
    [Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5. Quantification of the role of tibial posterior slope in knee joint mechanics and ACL force in simulated gait.
    Marouane H, Shirazi-Adl A, Hashemi J.
    J Biomech; 2015 Jul 16; 48(10):1899-905. PubMed ID: 25920895
    [Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7. Knee flexion angle and muscle activations control the stability of an anterior cruciate ligament deficient joint in gait.
    Sharifi M, Shirazi-Adl A.
    J Biomech; 2021 Mar 05; 117():110258. PubMed ID: 33493713
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Muscle, ligament, and joint-contact forces at the knee during walking.
    Shelburne KB, Torry MR, Pandy MG.
    Med Sci Sports Exerc; 2005 Nov 05; 37(11):1948-56. PubMed ID: 16286866
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Comparison of shear forces and ligament loading in the healthy and ACL-deficient knee during gait.
    Shelburne KB, Pandy MG, Torry MR.
    J Biomech; 2004 Mar 05; 37(3):313-9. PubMed ID: 14757450
    [Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Anterior cruciate ligament-deficient patients with passive knee joint laxity have a decreased range of anterior-posterior motion during active movements.
    Boeth H, Duda GN, Heller MO, Ehrig RM, Doyscher R, Jung T, Moewis P, Scheffler S, Taylor WR.
    Am J Sports Med; 2013 May 05; 41(5):1051-7. PubMed ID: 23492824
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. Sensitivity of medial-lateral load sharing to changes in adduction moments or angles in an asymptomatic knee joint model during gait.
    Marouane H, Shirazi-Adl A.
    Gait Posture; 2019 May 05; 70():39-47. PubMed ID: 30802643
    [Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. The effect of hamstring muscle compensation for anterior laxity in the ACL-deficient knee during gait.
    Liu W, Maitland ME.
    J Biomech; 2000 Jul 05; 33(7):871-9. PubMed ID: 10831762
    [Abstract] [Full Text] [Related]

  • 18. Contributions of the soleus and gastrocnemius muscles to the anterior cruciate ligament loading during single-leg landing.
    Mokhtarzadeh H, Yeow CH, Hong Goh JC, Oetomo D, Malekipour F, Lee PV.
    J Biomech; 2013 Jul 26; 46(11):1913-20. PubMed ID: 23731572
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Computational biomechanics of human knee joint in stair ascent: Muscle-ligament-contact forces and comparison with level walking.
    Makani A, Shirazi-Adl SA, Ghezelbash F.
    Int J Numer Method Biomed Eng; 2022 Nov 26; 38(11):e3646. PubMed ID: 36054682
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.