These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
182 related items for PubMed ID: 33773431
41. Signal optimized rough silver nanoparticle for rapid SERS sensing of pesticide residues in tea. Hassan MM, Zareef M, Jiao T, Liu S, Xu Y, Viswadevarayalu A, Li H, Chen Q. Food Chem; 2021 Feb 15; 338():127796. PubMed ID: 32805691 [Abstract] [Full Text] [Related]
44. Plasmonic Au nanostar Raman probes coupling with highly ordered TiO2/Au nanotube arrays as the reliable SERS sensing platform for chronic myeloid leukemia drug evaluation. Wen S, Su Y, Wu R, Zhou S, Min Q, Fan GC, Jiang LP, Song RB, Zhu JJ. Biosens Bioelectron; 2018 Oct 15; 117():260-266. PubMed ID: 29909197 [Abstract] [Full Text] [Related]
45. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K, Zhao Y. ACS Appl Mater Interfaces; 2015 Mar 18; 7(10):5725-35. PubMed ID: 25731067 [Abstract] [Full Text] [Related]
46. Hotspots engineering by grafting Au@Ag core-shell nanoparticles on the Au film over slightly etched nanoparticles substrate for on-site paraquat sensing. Wang C, Wu X, Dong P, Chen J, Xiao R. Biosens Bioelectron; 2016 Dec 15; 86():944-950. PubMed ID: 27498319 [Abstract] [Full Text] [Related]
47. Cysteamine-modified silver nanoparticle aggregates for quantitative SERS sensing of pentachlorophenol with a portable Raman spectrometer. Jiang X, Yang M, Meng Y, Jiang W, Zhan J. ACS Appl Mater Interfaces; 2013 Aug 14; 5(15):6902-8. PubMed ID: 23820578 [Abstract] [Full Text] [Related]
48. Photoelectrochemical aptasensing of ofloxacin based on the use of a TiO2 nanotube array co-sensitized with a nanocomposite prepared from polydopamine and Ag2S nanoparticles. Qin X, Geng L, Wang Q, Wang Y. Mikrochim Acta; 2019 Jun 11; 186(7):430. PubMed ID: 31187249 [Abstract] [Full Text] [Related]
49. High-Sensitive Assay of Nucleic Acid Using Tetrahedral DNA Probes and DNA Concatamers with a Surface-Enhanced Raman Scattering/Surface Plasmon Resonance Dual-Mode Biosensor Based on a Silver Nanorod-Covered Silver Nanohole Array. Song C, Jiang X, Yang Y, Zhang J, Larson S, Zhao Y, Wang L. ACS Appl Mater Interfaces; 2020 Jul 15; 12(28):31242-31254. PubMed ID: 32608960 [Abstract] [Full Text] [Related]
50. Rapid concentration detection and differentiation of bacteria in skimmed milk using surface enhanced Raman scattering mapping on 4-mercaptophenylboronic acid functionalized silver dendrites. Wang P, Pang S, Pearson B, Chujo Y, McLandsborough L, Fan M, He L. Anal Bioanal Chem; 2017 Mar 15; 409(8):2229-2238. PubMed ID: 28091716 [Abstract] [Full Text] [Related]
51. Quantification of antibiotics in food by octahedral gold-silver nanocages-based SERS sensor coupling multivariate calibration. Li H, Sheng W, Hassan MM, Geng W, Chen Q. Spectrochim Acta A Mol Biomol Spectrosc; 2024 Nov 05; 320():124595. PubMed ID: 38850828 [Abstract] [Full Text] [Related]
52. Rapid Surface Enhanced Raman Scattering (SERS) Detection of Sibutramine Hydrochloride in Pharmaceutical Capsules with a β-Cyclodextrin- Ag/Polyvivnyl Alcohol Hydrogel Substrate. Ouyang L, Jiang Z, Wang N, Zhu L, Tang H. Sensors (Basel); 2017 Jul 10; 17(7):. PubMed ID: 28698502 [Abstract] [Full Text] [Related]
53. Bifunctional 4MBA mediated recyclable SERS-based immunoassay induced by photocatalytic activity of TiO2 nanotube arrays. Wang X, Zhou L, Lai W, Jiang T, Zhou J. Phys Chem Chem Phys; 2016 Sep 14; 18(34):23795-802. PubMed ID: 27523026 [Abstract] [Full Text] [Related]
54. Identification of antibiotic residues in aquatic products with surface-enhanced Raman scattering powered by 1-D convolutional neural networks. Teng Y, Wang Z, Zuo S, Li X, Chen Y. Spectrochim Acta A Mol Biomol Spectrosc; 2023 Mar 15; 289():122195. PubMed ID: 36549071 [Abstract] [Full Text] [Related]
55. Extraction and preconcentration of tylosin from milk samples through functionalized TiO₂ nanoparticles reinforced with a hollow fiber membrane as a novel solid/liquid-phase microextraction technique. Sehati N, Dalali N, Soltanpour S, Dorraji MS. J Sep Sci; 2014 Aug 15; 37(15):2025-31. PubMed ID: 24890459 [Abstract] [Full Text] [Related]
56. A Simple Surface-Enhanced Raman Spectroscopic Method for on-Site Screening of Tetracycline Residue in Whole Milk. Dhakal S, Chao K, Huang Q, Kim M, Schmidt W, Qin J, Broadhurst CL. Sensors (Basel); 2018 Feb 01; 18(2):. PubMed ID: 29389871 [Abstract] [Full Text] [Related]
57. Ultrasensitive SERS detection of exhaled biomarkers of lung cancer using a multifunctional solid phase extraction membrane. Huang Y, Xie T, Zou K, Gu Y, Yang G, Zhang F, Qu LL, Yang S. Nanoscale; 2021 Aug 21; 13(31):13344-13352. PubMed ID: 34477740 [Abstract] [Full Text] [Related]
58. Sensitive determination of Norfloxacin in milk based on β-cyclodextrin functionalized silver nanoparticles SERS substrate. Qiu X, Gu J, Yang T, Ma C, Li L, Wu Y, Zhu C, Gao H, Yang Z, Wang Z, Li X, Hu A, Xu J, Zhong L, Shen J, Huang A, Chen G. Spectrochim Acta A Mol Biomol Spectrosc; 2022 Aug 05; 276():121212. PubMed ID: 35413530 [Abstract] [Full Text] [Related]
59. Simultaneous and Accurate Quantification of Multiple Antibiotics in Aquatic Samples by Surface-Enhanced Raman Scattering Using a Ti3C2Tx/DNA/Ag Membrane Substrate. Yu Z, Huang L, Zhang Z, Li G. Anal Chem; 2021 Sep 28; 93(38):13072-13079. PubMed ID: 34515467 [Abstract] [Full Text] [Related]
60. Construction of optimized Au@Ag core-shell nanorods for ultralow SERS detection of antibiotic levofloxacin molecules. Tian Y, Li G, Zhang H, Xu L, Jiao A, Chen F, Chen M. Opt Express; 2018 Sep 03; 26(18):23347-23358. PubMed ID: 30184986 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]