These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


223 related items for PubMed ID: 33788627

  • 1. Reductions in motoneuron excitability during sustained isometric contractions are dependent on stimulus and contraction intensity.
    Brownstein CG, Espeit L, Royer N, Ansdell P, Škarabot J, Souron R, Lapole T, Millet GY.
    J Neurophysiol; 2021 May 01; 125(5):1636-1646. PubMed ID: 33788627
    [Abstract] [Full Text] [Related]

  • 2. Spinal contribution to neuromuscular recovery differs between elbow-flexor and knee-extensor muscles after a maximal sustained fatiguing task.
    Vernillo G, Temesi J, Martin M, Krüger RL, Millet GY.
    J Neurophysiol; 2020 Sep 01; 124(3):763-773. PubMed ID: 32755359
    [Abstract] [Full Text] [Related]

  • 3. Intensity-dependent alterations in the excitability of cortical and spinal projections to the knee extensors during isometric and locomotor exercise.
    Weavil JC, Sidhu SK, Mangum TS, Richardson RS, Amann M.
    Am J Physiol Regul Integr Comp Physiol; 2015 Jun 15; 308(12):R998-1007. PubMed ID: 25876651
    [Abstract] [Full Text] [Related]

  • 4. Motoneuron responsiveness to corticospinal tract stimulation during the silent period induced by transcranial magnetic stimulation.
    Yacyshyn AF, Woo EJ, Price MC, McNeil CJ.
    Exp Brain Res; 2016 Dec 15; 234(12):3457-3463. PubMed ID: 27481287
    [Abstract] [Full Text] [Related]

  • 5. Corticospinal excitability of the biceps brachii is higher during arm cycling than an intensity-matched tonic contraction.
    Forman D, Raj A, Button DC, Power KE.
    J Neurophysiol; 2014 Sep 01; 112(5):1142-51. PubMed ID: 24899677
    [Abstract] [Full Text] [Related]

  • 6. Contraction intensity-dependent variations in the responses to brain and corticospinal tract stimulation after a single session of resistance training in men.
    Colomer-Poveda D, Romero-Arenas S, Lundbye-Jensen J, Hortobágyi T, Márquez G.
    J Appl Physiol (1985); 2019 Oct 01; 127(4):1128-1139. PubMed ID: 31436513
    [Abstract] [Full Text] [Related]

  • 7. Behaviour of the motoneurone pool in a fatiguing submaximal contraction.
    McNeil CJ, Giesebrecht S, Gandevia SC, Taylor JL.
    J Physiol; 2011 Jul 15; 589(Pt 14):3533-44. PubMed ID: 21606110
    [Abstract] [Full Text] [Related]

  • 8. Effect of blood flow occlusion on corticospinal excitability during sustained low-intensity isometric elbow flexion.
    Copithorne DB, Rice CL, McNeil CJ.
    J Neurophysiol; 2020 Mar 01; 123(3):1113-1119. PubMed ID: 31995434
    [Abstract] [Full Text] [Related]

  • 9. The effects of forearm position and contraction intensity on cortical and spinal excitability during a submaximal force steadiness task of the elbow flexors.
    Yacyshyn AF, Kuzyk S, Jakobi JM, McNeil CJ.
    J Neurophysiol; 2020 Feb 01; 123(2):522-528. PubMed ID: 31774348
    [Abstract] [Full Text] [Related]

  • 10. Motoneuron excitability of the quadriceps decreases during a fatiguing submaximal isometric contraction.
    Finn HT, Rouffet DM, Kennedy DS, Green S, Taylor JL.
    J Appl Physiol (1985); 2018 Apr 01; 124(4):970-979. PubMed ID: 29357479
    [Abstract] [Full Text] [Related]

  • 11. Output of human motoneuron pools to corticospinal inputs during voluntary contractions.
    Martin PG, Gandevia SC, Taylor JL.
    J Neurophysiol; 2006 Jun 01; 95(6):3512-8. PubMed ID: 16481454
    [Abstract] [Full Text] [Related]

  • 12. Corticospinal excitability to the biceps brachii and its relationship to postactivation potentiation of the elbow flexors.
    Collins BW, Gale LH, Buckle NCM, Button DC.
    Physiol Rep; 2017 Apr 01; 5(8):. PubMed ID: 28455452
    [Abstract] [Full Text] [Related]

  • 13. Fatigue-sensitive afferents inhibit extensor but not flexor motoneurons in humans.
    Martin PG, Smith JL, Butler JE, Gandevia SC, Taylor JL.
    J Neurosci; 2006 May 03; 26(18):4796-802. PubMed ID: 16672652
    [Abstract] [Full Text] [Related]

  • 14. Corticospinal excitability of the biceps brachii is shoulder position dependent.
    Collins BW, Cadigan EWJ, Stefanelli L, Button DC.
    J Neurophysiol; 2017 Dec 01; 118(6):3242-3251. PubMed ID: 28855295
    [Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Transcranial magnetic stimulation intensity affects exercise-induced changes in corticomotoneuronal excitability and inhibition and voluntary activation.
    Bachasson D, Temesi J, Gruet M, Yokoyama K, Rupp T, Millet GY, Verges S.
    Neuroscience; 2016 Feb 09; 314():125-33. PubMed ID: 26642805
    [Abstract] [Full Text] [Related]

  • 18.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 19. Elbow angle modulates corticospinal excitability to the resting biceps brachii at both spinal and supraspinal levels.
    Dongés SC, Taylor JL, Nuzzo JL.
    Exp Physiol; 2019 Apr 09; 104(4):546-555. PubMed ID: 30690803
    [Abstract] [Full Text] [Related]

  • 20. Changes in motoneuron excitability during voluntary muscle activity in humans with spinal cord injury.
    Vastano R, Perez MA.
    J Neurophysiol; 2020 Feb 01; 123(2):454-461. PubMed ID: 31461361
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.