These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


212 related items for PubMed ID: 33802641

  • 1. Secondary Metabolism and Defense Responses Are Differently Regulated in Two Grapevine Cultivars during Ripening.
    Gambino G, Boccacci P, Pagliarani C, Perrone I, Cuozzo D, Mannini F, Gribaudo I.
    Int J Mol Sci; 2021 Mar 17; 22(6):. PubMed ID: 33802641
    [Abstract] [Full Text] [Related]

  • 2. Berry skin development in Norton grape: distinct patterns of transcriptional regulation and flavonoid biosynthesis.
    Ali MB, Howard S, Chen S, Wang Y, Yu O, Kovacs LG, Qiu W.
    BMC Plant Biol; 2011 Jan 10; 11():7. PubMed ID: 21219654
    [Abstract] [Full Text] [Related]

  • 3. Whole-genome sequencing and SNV genotyping of 'Nebbiolo' (Vitis vinifera L.) clones.
    Gambino G, Dal Molin A, Boccacci P, Minio A, Chitarra W, Avanzato CG, Tononi P, Perrone I, Raimondi S, Schneider A, Pezzotti M, Mannini F, Gribaudo I, Delledonne M.
    Sci Rep; 2017 Dec 11; 7(1):17294. PubMed ID: 29229917
    [Abstract] [Full Text] [Related]

  • 4. Transcriptomics of the grape berry shrivel ripening disorder.
    Savoi S, Herrera JC, Forneck A, Griesser M.
    Plant Mol Biol; 2019 Jun 11; 100(3):285-301. PubMed ID: 30941542
    [Abstract] [Full Text] [Related]

  • 5. Single-nucleotide polymorphism (SNP) genotyping assays for the varietal authentication of 'Nebbiolo' musts and wines.
    Boccacci P, Chitarra W, Schneider A, Rolle L, Gambino G.
    Food Chem; 2020 May 15; 312():126100. PubMed ID: 31901826
    [Abstract] [Full Text] [Related]

  • 6. Ripening Transcriptomic Program in Red and White Grapevine Varieties Correlates with Berry Skin Anthocyanin Accumulation.
    Massonnet M, Fasoli M, Tornielli GB, Altieri M, Sandri M, Zuccolotto P, Paci P, Gardiman M, Zenoni S, Pezzotti M.
    Plant Physiol; 2017 Aug 15; 174(4):2376-2396. PubMed ID: 28652263
    [Abstract] [Full Text] [Related]

  • 7. Transcriptome analysis at four developmental stages of grape berry (Vitis vinifera cv. Shiraz) provides insights into regulated and coordinated gene expression.
    Sweetman C, Wong DC, Ford CM, Drew DP.
    BMC Genomics; 2012 Dec 11; 13():691. PubMed ID: 23227855
    [Abstract] [Full Text] [Related]

  • 8. The Molecular Priming of Defense Responses is Differently Regulated in Grapevine Genotypes Following Elicitor Application against Powdery Mildew.
    Pagliarani C, Moine A, Chitarra W, Meloni GR, Abbà S, Nerva L, Pugliese M, Gullino ML, Gambino G.
    Int J Mol Sci; 2020 Sep 15; 21(18):. PubMed ID: 32942781
    [Abstract] [Full Text] [Related]

  • 9. Combined physiological, transcriptome, and cis-regulatory element analyses indicate that key aspects of ripening, metabolism, and transcriptional program in grapes (Vitis vinifera L.) are differentially modulated accordingly to fruit size.
    Wong DC, Lopez Gutierrez R, Dimopoulos N, Gambetta GA, Castellarin SD.
    BMC Genomics; 2016 May 31; 17():416. PubMed ID: 27245662
    [Abstract] [Full Text] [Related]

  • 10. Transcriptomic and biochemical investigations support the role of rootstock-scion interaction in grapevine berry quality.
    Zombardo A, Crosatti C, Bagnaresi P, Bassolino L, Reshef N, Puccioni S, Faccioli P, Tafuri A, Delledonne M, Fait A, Storchi P, Cattivelli L, Mica E.
    BMC Genomics; 2020 Jul 08; 21(1):468. PubMed ID: 32641089
    [Abstract] [Full Text] [Related]

  • 11. Genetic analysis of a white-to-red berry skin color reversion and its transcriptomic and metabolic consequences in grapevine (Vitis vinifera cv. 'Moscatel Galego').
    Ferreira V, Matus JT, Pinto-Carnide O, Carrasco D, Arroyo-García R, Castro I.
    BMC Genomics; 2019 Dec 09; 20(1):952. PubMed ID: 31815637
    [Abstract] [Full Text] [Related]

  • 12. 'Nebbiolo' genome assembly allows surveying the occurrence and functional implications of genomic structural variations in grapevines (Vitis vinifera L.).
    Maestri S, Gambino G, Lopatriello G, Minio A, Perrone I, Cosentino E, Giovannone B, Marcolungo L, Alfano M, Rombauts S, Cantu D, Rossato M, Delledonne M, Calderón L.
    BMC Genomics; 2022 Feb 24; 23(1):159. PubMed ID: 35209840
    [Abstract] [Full Text] [Related]

  • 13. Metabolic and transcript analysis of the flavonoid pathway in diseased and recovered Nebbiolo and Barbera grapevines (Vitis vinifera L.) following infection by Flavescence dorée phytoplasma.
    Margaria P, Ferrandino A, Caciagli P, Kedrina O, Schubert A, Palmano S.
    Plant Cell Environ; 2014 Sep 24; 37(9):2183-200. PubMed ID: 24689527
    [Abstract] [Full Text] [Related]

  • 14. Transcriptional control of anthocyanin biosynthetic genes in extreme phenotypes for berry pigmentation of naturally occurring grapevines.
    Castellarin SD, Di Gaspero G.
    BMC Plant Biol; 2007 Aug 30; 7():46. PubMed ID: 17760970
    [Abstract] [Full Text] [Related]

  • 15. Day and night heat stress trigger different transcriptomic responses in green and ripening grapevine (vitis vinifera) fruit.
    Rienth M, Torregrosa L, Luchaire N, Chatbanyong R, Lecourieux D, Kelly MT, Romieu C.
    BMC Plant Biol; 2014 Apr 28; 14():108. PubMed ID: 24774299
    [Abstract] [Full Text] [Related]

  • 16. Water deficits accelerate ripening and induce changes in gene expression regulating flavonoid biosynthesis in grape berries.
    Castellarin SD, Matthews MA, Di Gaspero G, Gambetta GA.
    Planta; 2007 Dec 28; 227(1):101-12. PubMed ID: 17694320
    [Abstract] [Full Text] [Related]

  • 17. Isogene specific oligo arrays reveal multifaceted changes in gene expression during grape berry (Vitis vinifera L.) development.
    Terrier N, Glissant D, Grimplet J, Barrieu F, Abbal P, Couture C, Ageorges A, Atanassova R, Léon C, Renaudin JP, Dédaldéchamp F, Romieu C, Delrot S, Hamdi S.
    Planta; 2005 Nov 28; 222(5):832-47. PubMed ID: 16151847
    [Abstract] [Full Text] [Related]

  • 18. Transcriptional regulation of anthocyanin biosynthesis in ripening fruits of grapevine under seasonal water deficit.
    Castellarin SD, Pfeiffer A, Sivilotti P, Degan M, Peterlunger E, DI Gaspero G.
    Plant Cell Environ; 2007 Nov 28; 30(11):1381-99. PubMed ID: 17897409
    [Abstract] [Full Text] [Related]

  • 19. Colour variation in red grapevines (Vitis vinifera L.): genomic organisation, expression of flavonoid 3'-hydroxylase, flavonoid 3',5'-hydroxylase genes and related metabolite profiling of red cyanidin-/blue delphinidin-based anthocyanins in berry skin.
    Castellarin SD, Di Gaspero G, Marconi R, Nonis A, Peterlunger E, Paillard S, Adam-Blondon AF, Testolin R.
    BMC Genomics; 2006 Jan 24; 7():12. PubMed ID: 16433923
    [Abstract] [Full Text] [Related]

  • 20. Varietal and pre-fermentative volatiles during ripening of Vitis vinifera cv Nebbiolo berries from three growing areas.
    Ferrandino A, Carlomagno A, Baldassarre S, Schubert A.
    Food Chem; 2012 Dec 15; 135(4):2340-9. PubMed ID: 22980811
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.