These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. The HDL from septic-ARDS patients with composition changes exacerbates pulmonary endothelial dysfunction and acute lung injury induced by cecal ligation and puncture (CLP) in mice. Yang L, Liu S, Han S, Hu Y, Wu Z, Shi X, Pang B, Ma Y, Jin J. Respir Res; 2020 Nov 04; 21(1):293. PubMed ID: 33148285 [Abstract] [Full Text] [Related]
4. Exploring the metabolic phenotypes associated with different host inflammation of acute respiratory distress syndrome (ARDS) from lung metabolomics in mice. Yu F, Zhu J, Lei M, Wang CJ, Xie K, Xu F, Lin SH. Rapid Commun Mass Spectrom; 2021 Jan 30; 35(2):e8971. PubMed ID: 33049802 [Abstract] [Full Text] [Related]
6. Resveratrol alleviates acute lung injury through regulating PLSCR-3-mediated mitochondrial dysfunction and mitophagy in a cecal ligation and puncture model. Wang C, Yuan J, Du J. Eur J Pharmacol; 2021 Dec 15; 913():174643. PubMed ID: 34808102 [Abstract] [Full Text] [Related]
7. Ropivacaine attenuates endotoxin plus hyperinflation-mediated acute lung injury via inhibition of early-onset Src-dependent signaling. Piegeler T, Dull RO, Hu G, Castellon M, Chignalia AZ, Koshy RG, Votta-Velis EG, Borgeat A, Schwartz DE, Beck-Schimmer B, Minshall RD. BMC Anesthesiol; 2014 Dec 15; 14():57. PubMed ID: 25097454 [Abstract] [Full Text] [Related]
13. Effects of peroxisome proliferator-activated receptor-β/δ on sepsis induced acute lung injury. Wang C, Zhou G, Zeng Z. Chin Med J (Engl); 2014 Mar 25; 127(11):2129-37. PubMed ID: 24890166 [Abstract] [Full Text] [Related]
14. Inhibition of Prostaglandin F2α Receptors Exaggerates HCl-Induced Lung Inflammation in Mice. Maehara T, Fujimori K. Int J Mol Sci; 2021 Nov 27; 22(23):. PubMed ID: 34884648 [Abstract] [Full Text] [Related]
15. Nebulized Heparin Attenuates Pulmonary Coagulopathy and Inflammation through Alveolar Macrophages in a Rat Model of Acute Lung Injury. Chimenti L, Camprubí-Rimblas M, Guillamat-Prats R, Gomez MN, Tijero J, Blanch L, Artigas A. Thromb Haemost; 2017 Nov 27; 117(11):2125-2134. PubMed ID: 29202212 [Abstract] [Full Text] [Related]
17. Role of cuproptosis in mediating the severity of experimental malaria-associated acute lung injury/acute respiratory distress syndrome. Hou X, Zhou T, Wang Q, Chen P, Zhang M, Wu L, Liu W, Jin X, Liu Z, Li H, Huang B. Parasit Vectors; 2024 Oct 19; 17(1):433. PubMed ID: 39427197 [Abstract] [Full Text] [Related]
18. Growth hormone releasing peptide-2, a ghrelin agonist, attenuates lipopolysaccharide-induced acute lung injury in rats. Li G, Li J, Zhou Q, Song X, Liang H, Huang L. Tohoku J Exp Med; 2010 Sep 19; 222(1):7-13. PubMed ID: 20805679 [Abstract] [Full Text] [Related]
19. Depletion of circulating monocytes suppresses IL-17 and HMGB1 expression in mice with LPS-induced acute lung injury. Jiang Z, Zhou Q, Gu C, Li D, Zhu L. Am J Physiol Lung Cell Mol Physiol; 2017 Feb 01; 312(2):L231-L242. PubMed ID: 27913426 [Abstract] [Full Text] [Related]
20. Delivery systems of therapeutic nucleic acids for the treatment of acute lung injury/acute respiratory distress syndrome. Zhuang C, Kang M, Lee M. J Control Release; 2023 Aug 01; 360():1-14. PubMed ID: 37330013 [Abstract] [Full Text] [Related] Page: [Next] [New Search]