These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


222 related items for PubMed ID: 33824327

  • 1. A quantum heat engine driven by atomic collisions.
    Bouton Q, Nettersheim J, Burgardt S, Adam D, Lutz E, Widera A.
    Nat Commun; 2021 Apr 06; 12(1):2063. PubMed ID: 33824327
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Experimental Characterization of a Spin Quantum Heat Engine.
    Peterson JPS, Batalhão TB, Herrera M, Souza AM, Sarthour RS, Oliveira IS, Serra RM.
    Phys Rev Lett; 2019 Dec 13; 123(24):240601. PubMed ID: 31922824
    [Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8. Multilayer Graphene as an Endoreversible Otto Engine.
    Myers NM, Peña FJ, Cortés N, Vargas P.
    Nanomaterials (Basel); 2023 May 05; 13(9):. PubMed ID: 37177093
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Performance Analysis and Optimization for Irreversible Combined Carnot Heat Engine Working with Ideal Quantum Gases.
    Chen L, Meng Z, Ge Y, Wu F.
    Entropy (Basel); 2021 Apr 27; 23(5):. PubMed ID: 33925622
    [Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Finite-time performance of a quantum heat engine with a squeezed thermal bath.
    Wang J, He J, Ma Y.
    Phys Rev E; 2019 Nov 27; 100(5-1):052126. PubMed ID: 31870038
    [Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15. The equivalence of minimum entropy production and maximum thermal efficiency in endoreversible heat engines.
    Haseli Y.
    Heliyon; 2016 May 27; 2(5):e00113. PubMed ID: 27441284
    [Abstract] [Full Text] [Related]

  • 16. Non-Markovian thermal operations boosting the performance of quantum heat engines.
    Ptaszyński K.
    Phys Rev E; 2022 Jul 27; 106(1-1):014114. PubMed ID: 35974499
    [Abstract] [Full Text] [Related]

  • 17. Algorithmic quantum heat engines.
    Köse E, Çakmak S, Gençten A, Kominis IK, Müstecaplıoğlu ÖE.
    Phys Rev E; 2019 Jul 27; 100(1-1):012109. PubMed ID: 31499932
    [Abstract] [Full Text] [Related]

  • 18. Work and efficiency fluctuations in a quantum Otto cycle with idle levels.
    Anka MF, de Oliveira TR, Jonathan D.
    Phys Rev E; 2024 Jun 27; 109(6-1):064129. PubMed ID: 39021004
    [Abstract] [Full Text] [Related]

  • 19. Measurement-induced operation of two-ion quantum heat machines.
    Chand S, Biswas A.
    Phys Rev E; 2017 Mar 27; 95(3-1):032111. PubMed ID: 28415299
    [Abstract] [Full Text] [Related]

  • 20.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.