These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


170 related items for PubMed ID: 3383370

  • 21. Myocardial creatine kinase kinetics in hearts with postinfarction left ventricular remodeling.
    Murakami Y, Zhang J, Eijgelshoven MH, Chen W, Carlyle WC, Zhang Y, Gong G, Bache RJ.
    Am J Physiol; 1999 Mar; 276(3):H892-900. PubMed ID: 10070072
    [Abstract] [Full Text] [Related]

  • 22. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.
    Weiss K, Bottomley PA, Weiss RG.
    NMR Biomed; 2015 Jun; 28(6):694-705. PubMed ID: 25914379
    [Abstract] [Full Text] [Related]

  • 23. Kinetics of the creatine kinase reaction in neonatal rabbit heart: an empirical analysis of the rate equation.
    McAuliffe JJ, Perry SB, Brooks EE, Ingwall JS.
    Biochemistry; 1991 Mar 12; 30(10):2585-93. PubMed ID: 2001348
    [Abstract] [Full Text] [Related]

  • 24. Disruption of myofibrillar energy use: dual mechanisms that may contribute to postischemic dysfunction in stunned myocardium.
    Greenfield RA, Swain JL.
    Circ Res; 1987 Feb 12; 60(2):283-9. PubMed ID: 2952365
    [Abstract] [Full Text] [Related]

  • 25. Enflurane enhances postischemic functional recovery in the isolated rat heart.
    Freedman BM, Hamm DP, Everson CT, Wechsler AS, Christian CM.
    Anesthesiology; 1985 Jan 12; 62(1):29-33. PubMed ID: 3966666
    [Abstract] [Full Text] [Related]

  • 26. Myocardial energetics during ventricular fibrillation investigated by magnetization transfer nuclear magnetic resonance spectroscopy.
    Kusuoka H, Chacko VP, Marban E.
    Circ Res; 1992 Nov 12; 71(5):1111-22. PubMed ID: 1394873
    [Abstract] [Full Text] [Related]

  • 27. Substrate competition in postischemic myocardium. Effect of substrate availability during reperfusion on metabolic and contractile recovery in isolated rat hearts.
    Tamm C, Benzi R, Papageorgiou I, Tardy I, Lerch R.
    Circ Res; 1994 Dec 12; 75(6):1103-12. PubMed ID: 7955147
    [Abstract] [Full Text] [Related]

  • 28. Intracellular high-energy phosphate transfer in normal and hypertrophied myocardium.
    Bittl JA, Ingwall JS.
    Circulation; 1987 Jan 12; 75(1 Pt 2):I96-101. PubMed ID: 2947755
    [Abstract] [Full Text] [Related]

  • 29. Measurement of ATP synthesis rates by 31P-NMR spectroscopy in the intact myocardium in vivo.
    Robitaille PM, Merkle H, Sako E, Lang G, Clack RM, Bianco R, From AH, Foker J, Uğurbil K.
    Magn Reson Med; 1990 Jul 12; 15(1):8-24. PubMed ID: 2374502
    [Abstract] [Full Text] [Related]

  • 30. Reduced substrate oxidation in postischemic myocardium: 13C and 31P NMR analyses.
    Lewandowski ED, Johnston DL.
    Am J Physiol; 1990 May 12; 258(5 Pt 2):H1357-65. PubMed ID: 2337171
    [Abstract] [Full Text] [Related]

  • 31. Cardioplegia-induced damage to ischemic immature myocardium is independent of oxygen availability.
    Baker JE, Boerboom LE, Olinger GN.
    Ann Thorac Surg; 1990 Dec 12; 50(6):934-9. PubMed ID: 2241386
    [Abstract] [Full Text] [Related]

  • 32. Protective effects of dimethyl amiloride against postischemic myocardial dysfunction in rabbit hearts: phosphorus 31-nuclear magnetic resonance measurements of intracellular pH and cellular energy.
    Koike A, Akita T, Hotta Y, Takeya K, Kodama I, Murase M, Abe T, Toyama J.
    J Thorac Cardiovasc Surg; 1996 Sep 12; 112(3):765-75. PubMed ID: 8800166
    [Abstract] [Full Text] [Related]

  • 33. Is there the creatine kinase equilibrium in working heart cells?
    Saks VA, Aliev MK.
    Biochem Biophys Res Commun; 1996 Oct 14; 227(2):360-7. PubMed ID: 8878521
    [Abstract] [Full Text] [Related]

  • 34. Advantages of perfluorochemical perfusion in the isolated working rabbit heart preparation using 31P-NMR.
    Freeman D, Mayr H, Schmidt P, Roberts JD, Bing RJ.
    Biochim Biophys Acta; 1987 Mar 11; 927(3):350-8. PubMed ID: 3814627
    [Abstract] [Full Text] [Related]

  • 35. Role of an ATP-sensitive potassium channel opener, YM934, in mitochondrial energy production in ischemic/reperfused heart.
    Tanonaka K, Taguchi T, Koshimizu M, Ando T, Morinaka T, Yogo T, Konishi F, Takeo S.
    J Pharmacol Exp Ther; 1999 Nov 11; 291(2):710-6. PubMed ID: 10525091
    [Abstract] [Full Text] [Related]

  • 36. Adenosine triphosphate compartmentation in living hearts: a phosphorus nuclear magnetic resonance saturation transfer study.
    Nunnally RL, Hollis DP.
    Biochemistry; 1979 Aug 07; 18(16):3642-6. PubMed ID: 476074
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Pyruvate dehydrogenase influences postischemic heart function.
    Lewandowski ED, White LT.
    Circulation; 1995 Apr 01; 91(7):2071-9. PubMed ID: 7895366
    [Abstract] [Full Text] [Related]

  • 39. Myocardial adaptation during acute hibernation: mechanisms of phosphocreatine recovery.
    Schaefer S, Carr LJ, Kreutzer U, Jue T.
    Cardiovasc Res; 1993 Nov 01; 27(11):2044-51. PubMed ID: 8287416
    [Abstract] [Full Text] [Related]

  • 40. A 31P-NMR saturation transfer study of the regulation of creatine kinase in the rat heart.
    Matthews PM, Bland JL, Gadian DG, Radda GK.
    Biochim Biophys Acta; 1982 Nov 17; 721(3):312-20. PubMed ID: 7171631
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.