These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
310 related items for PubMed ID: 33873117
1. Inter-session repeatability of markerless motion capture gait kinematics. Kanko RM, Laende E, Selbie WS, Deluzio KJ. J Biomech; 2021 May 24; 121():110422. PubMed ID: 33873117 [Abstract] [Full Text] [Related]
2. Concurrent assessment of gait kinematics using marker-based and markerless motion capture. Kanko RM, Laende EK, Davis EM, Selbie WS, Deluzio KJ. J Biomech; 2021 Oct 11; 127():110665. PubMed ID: 34380101 [Abstract] [Full Text] [Related]
3. Markerless motion capture provides repeatable gait outcomes in patients with knee osteoarthritis. Outerleys J, Mihic A, Keller V, Laende E, Deluzio K. J Biomech; 2024 May 11; 168():112115. PubMed ID: 38663111 [Abstract] [Full Text] [Related]
4. Clothing condition does not affect meaningful clinical interpretation in markerless motion capture. Keller VT, Outerleys JB, Kanko RM, Laende EK, Deluzio KJ. J Biomech; 2022 Aug 11; 141():111182. PubMed ID: 35749889 [Abstract] [Full Text] [Related]
5. Inter-trial variability is higher in 3D markerless compared to marker-based motion capture: Implications for data post-processing and analysis. Horsak B, Prock K, Krondorfer P, Siragy T, Simonlehner M, Dumphart B. J Biomech; 2024 Mar 11; 166():112049. PubMed ID: 38493576 [Abstract] [Full Text] [Related]
6. Applications of markerless motion capture in gait recognition. Sandau M. Dan Med J; 2016 Mar 11; 63(3):. PubMed ID: 26931198 [Abstract] [Full Text] [Related]
7. Assessment of spatiotemporal gait parameters using a deep learning algorithm-based markerless motion capture system. Kanko RM, Laende EK, Strutzenberger G, Brown M, Selbie WS, DePaul V, Scott SH, Deluzio KJ. J Biomech; 2021 Jun 09; 122():110414. PubMed ID: 33915475 [Abstract] [Full Text] [Related]
8. Repeatability and minimal detectable change including clothing effects for smartphone-based 3D markerless motion capture. Horsak B, Kainz H, Dumphart B. J Biomech; 2024 Oct 09; 175():112281. PubMed ID: 39163799 [Abstract] [Full Text] [Related]
9. On the reliability of single-camera markerless systems for overground gait monitoring. Boldo M, Di Marco R, Martini E, Nardon M, Bertucco M, Bombieri N. Comput Biol Med; 2024 Mar 09; 171():108101. PubMed ID: 38340440 [Abstract] [Full Text] [Related]
10. Accuracy and repeatability of joint angles measured using a single camera markerless motion capture system. Schmitz A, Ye M, Shapiro R, Yang R, Noehren B. J Biomech; 2014 Jan 22; 47(2):587-91. PubMed ID: 24315287 [Abstract] [Full Text] [Related]
11. Absolute Reliability of Gait Parameters Acquired With Markerless Motion Capture in Living Domains. Riazati S, McGuirk TE, Perry ES, Sihanath WB, Patten C. Front Hum Neurosci; 2022 Jan 22; 16():867474. PubMed ID: 35782037 [Abstract] [Full Text] [Related]
12. Comparison of markerless and marker-based motion capture of gait kinematics in individuals with cerebral palsy and chronic stroke: A case study series. Steffensen EA, Magalhães F, Knarr BA, Kingston DC. Res Sq; 2023 Feb 08. PubMed ID: 36798184 [Abstract] [Full Text] [Related]
13. Markerless motion capture estimates of lower extremity kinematics and kinetics are comparable to marker-based across 8 movements. Song K, Hullfish TJ, Scattone Silva R, Silbernagel KG, Baxter JR. J Biomech; 2023 Aug 08; 157():111751. PubMed ID: 37552921 [Abstract] [Full Text] [Related]
14. Comparison of markerless and marker-based motion capture technologies through simultaneous data collection during gait: proof of concept. Ceseracciu E, Sawacha Z, Cobelli C. PLoS One; 2014 Aug 08; 9(3):e87640. PubMed ID: 24595273 [Abstract] [Full Text] [Related]
15. A comparison of three-dimensional kinematics between markerless and marker-based motion capture in overground gait. Ripic Z, Nienhuis M, Signorile JF, Best TM, Jacobs KA, Eltoukhy M. J Biomech; 2023 Oct 08; 159():111793. PubMed ID: 37725886 [Abstract] [Full Text] [Related]
16. Concurrent validity of smartphone-based markerless motion capturing to quantify lower-limb joint kinematics in healthy and pathological gait. Horsak B, Eichmann A, Lauer K, Prock K, Krondorfer P, Siragy T, Dumphart B. J Biomech; 2023 Oct 08; 159():111801. PubMed ID: 37738945 [Abstract] [Full Text] [Related]
17. Comparison of kinematics between Theia markerless and conventional marker-based gait analysis in clinical patients. Wren TAL, Isakov P, Rethlefsen SA. Gait Posture; 2023 Jul 08; 104():9-14. PubMed ID: 37285635 [Abstract] [Full Text] [Related]
18. Inclusion of a skeletal model partly improves the reliability of lower limb joint angles derived from a markerless depth camera. Collings TJ, Devaprakash D, Pizzolato C, Lloyd DG, Barrett RS, Lenton GK, Thomeer LT, Bourne MN. J Biomech; 2024 Jun 08; 170():112160. PubMed ID: 38824704 [Abstract] [Full Text] [Related]
19. Comparison of kinematics and joint moments calculations for lower limbs during gait using markerless and marker-based motion capture. Huang T, Ruan M, Huang S, Fan L, Wu X. Front Bioeng Biotechnol; 2024 Jun 08; 12():1280363. PubMed ID: 38532880 [Abstract] [Full Text] [Related]
20. Pose2Sim: An End-to-End Workflow for 3D Markerless Sports Kinematics-Part 2: Accuracy. Pagnon D, Domalain M, Reveret L. Sensors (Basel); 2022 Apr 01; 22(7):. PubMed ID: 35408326 [Abstract] [Full Text] [Related] Page: [Next] [New Search]