These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


256 related items for PubMed ID: 33874769

  • 21.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 22. 2'-O methylation of RNA cap in SARS-CoV-2 captured by serial crystallography.
    Wilamowski M, Sherrell DA, Minasov G, Kim Y, Shuvalova L, Lavens A, Chard R, Maltseva N, Jedrzejczak R, Rosas-Lemus M, Saint N, Foster IT, Michalska K, Satchell KJF, Joachimiak A.
    Proc Natl Acad Sci U S A; 2021 May 25; 118(21):. PubMed ID: 33972410
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. SS148 and WZ16 inhibit the activities of nsp10-nsp16 complexes from all seven human pathogenic coronaviruses.
    Li F, Ghiabi P, Hajian T, Klima M, Li ASM, Khalili Yazdi A, Chau I, Loppnau P, Kutera M, Seitova A, Bolotokova A, Hutchinson A, Perveen S, Boura E, Vedadi M.
    Biochim Biophys Acta Gen Subj; 2023 Apr 25; 1867(4):130319. PubMed ID: 36764586
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Coronavirus nsp10/nsp16 Methyltransferase Can Be Targeted by nsp10-Derived Peptide In Vitro and In Vivo To Reduce Replication and Pathogenesis.
    Wang Y, Sun Y, Wu A, Xu S, Pan R, Zeng C, Jin X, Ge X, Shi Z, Ahola T, Chen Y, Guo D.
    J Virol; 2015 Aug 25; 89(16):8416-27. PubMed ID: 26041293
    [Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. SARS-CoV-2 Uses Nonstructural Protein 16 To Evade Restriction by IFIT1 and IFIT3.
    Schindewolf C, Lokugamage K, Vu MN, Johnson BA, Scharton D, Plante JA, Kalveram B, Crocquet-Valdes PA, Sotcheff S, Jaworski E, Alvarado RE, Debbink K, Daugherty MD, Weaver SC, Routh AL, Walker DH, Plante KS, Menachery VD.
    J Virol; 2023 Feb 28; 97(2):e0153222. PubMed ID: 36722972
    [Abstract] [Full Text] [Related]

  • 30. A universal fluorescence polarization high throughput screening assay to target the SAM-binding sites of SARS-CoV-2 and other viral methyltransferases.
    Samrat SK, Bashir Q, Zhang R, Huang Y, Liu Y, Wu X, Brown T, Wang W, Zheng YG, Zhang QY, Chen Y, Li Z, Li H.
    Emerg Microbes Infect; 2023 Dec 28; 12(1):2204164. PubMed ID: 37060263
    [Abstract] [Full Text] [Related]

  • 31. New targets for drug design: importance of nsp14/nsp10 complex formation for the 3'-5' exoribonucleolytic activity on SARS-CoV-2.
    Saramago M, Bárria C, Costa VG, Souza CS, Viegas SC, Domingues S, Lousa D, Soares CM, Arraiano CM, Matos RG.
    FEBS J; 2021 Sep 28; 288(17):5130-5147. PubMed ID: 33705595
    [Abstract] [Full Text] [Related]

  • 32. Characterization of the SARS-CoV-2 ExoN (nsp14ExoN-nsp10) complex: implications for its role in viral genome stability and inhibitor identification.
    Baddock HT, Brolih S, Yosaatmadja Y, Ratnaweera M, Bielinski M, Swift LP, Cruz-Migoni A, Fan H, Keown JR, Walker AP, Morris GM, Grimes JM, Fodor E, Schofield CJ, Gileadi O, McHugh PJ.
    Nucleic Acids Res; 2022 Feb 22; 50(3):1484-1500. PubMed ID: 35037045
    [Abstract] [Full Text] [Related]

  • 33. Structure-Based Virtual Screening for Methyltransferase Inhibitors of SARS-CoV-2 nsp14 and nsp16.
    Wu K, Guo Y, Xu T, Huang W, Guo D, Cao L, Lei J.
    Molecules; 2024 May 15; 29(10):. PubMed ID: 38792173
    [Abstract] [Full Text] [Related]

  • 34. Analysis of critical protein-protein interactions of SARS-CoV-2 capping and proofreading molecular machineries towards designing dual target inhibitory peptides.
    Arabi-Jeshvaghani F, Javadi-Zarnaghi F, Ganjalikhany MR.
    Sci Rep; 2023 Jan 07; 13(1):350. PubMed ID: 36611052
    [Abstract] [Full Text] [Related]

  • 35. Identification of naphthyridine and quinoline derivatives as potential Nsp16-Nsp10 inhibitors: a pharmacoinformatics study.
    Aldahham BJM, Al-Khafaji K, Saleh MY, Abdelhakem AM, Alanazi AM, Islam MA.
    J Biomol Struct Dyn; 2022 Jun 07; 40(9):3899-3906. PubMed ID: 33252031
    [Abstract] [Full Text] [Related]

  • 36. NSP16 2'-O-MTase in Coronavirus Pathogenesis: Possible Prevention and Treatments Strategies.
    Chang LJ, Chen TH.
    Viruses; 2021 Mar 24; 13(4):. PubMed ID: 33804957
    [Abstract] [Full Text] [Related]

  • 37. In silico identification of novel SARS-COV-2 2'-O-methyltransferase (nsp16) inhibitors: structure-based virtual screening, molecular dynamics simulation and MM-PBSA approaches.
    El Hassab MA, Ibrahim TM, Al-Rashood ST, Alharbi A, Eskandrani RO, Eldehna WM.
    J Enzyme Inhib Med Chem; 2021 Dec 24; 36(1):727-736. PubMed ID: 33685335
    [Abstract] [Full Text] [Related]

  • 38. Ligand and Structure-Based In Silico Determination of the Most Promising SARS-CoV-2 nsp16-nsp10 2'-o-Methyltransferase Complex Inhibitors among 3009 FDA Approved Drugs.
    Eissa IH, Alesawy MS, Saleh AM, Elkaeed EB, Alsfouk BA, El-Attar AMM, Metwaly AM.
    Molecules; 2022 Mar 31; 27(7):. PubMed ID: 35408684
    [Abstract] [Full Text] [Related]

  • 39. Refolding of lid subdomain of SARS-CoV-2 nsp14 upon nsp10 interaction releases exonuclease activity.
    Czarna A, Plewka J, Kresik L, Matsuda A, Karim A, Robinson C, O'Byrne S, Cunningham F, Georgiou I, Wilk P, Pachota M, Popowicz G, Wyatt PG, Dubin G, Pyrć K.
    Structure; 2022 Aug 04; 30(8):1050-1054.e2. PubMed ID: 35609600
    [Abstract] [Full Text] [Related]

  • 40. Crystal structure of SARS-CoV-2 nsp10/nsp16 2'-O-methylase and its implication on antiviral drug design.
    Lin S, Chen H, Ye F, Chen Z, Yang F, Zheng Y, Cao Y, Qiao J, Yang S, Lu G.
    Signal Transduct Target Ther; 2020 Jul 29; 5(1):131. PubMed ID: 32728018
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 13.