These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


139 related items for PubMed ID: 33879750

  • 1. Evaluation of a deep learning-based computer-aided detection algorithm on chest radiographs: Case-control study.
    Choi SY, Park S, Kim M, Park J, Choi YR, Jin KN.
    Medicine (Baltimore); 2021 Apr 23; 100(16):e25663. PubMed ID: 33879750
    [Abstract] [Full Text] [Related]

  • 2. Development and Validation of Deep Learning-based Automatic Detection Algorithm for Malignant Pulmonary Nodules on Chest Radiographs.
    Nam JG, Park S, Hwang EJ, Lee JH, Jin KN, Lim KY, Vu TH, Sohn JH, Hwang S, Goo JM, Park CM.
    Radiology; 2019 Jan 23; 290(1):218-228. PubMed ID: 30251934
    [Abstract] [Full Text] [Related]

  • 3. Deep learning-based detection system for multiclass lesions on chest radiographs: comparison with observer readings.
    Park S, Lee SM, Lee KH, Jung KH, Bae W, Choe J, Seo JB.
    Eur Radiol; 2020 Mar 23; 30(3):1359-1368. PubMed ID: 31748854
    [Abstract] [Full Text] [Related]

  • 4. Added Value of Deep Learning-based Detection System for Multiple Major Findings on Chest Radiographs: A Randomized Crossover Study.
    Sung J, Park S, Lee SM, Bae W, Park B, Jung E, Seo JB, Jung KH.
    Radiology; 2021 May 23; 299(2):450-459. PubMed ID: 33754828
    [No Abstract] [Full Text] [Related]

  • 5. Optimal matrix size of chest radiographs for computer-aided detection on lung nodule or mass with deep learning.
    Kim YG, Lee SM, Lee KH, Jang R, Seo JB, Kim N.
    Eur Radiol; 2020 Sep 23; 30(9):4943-4951. PubMed ID: 32350657
    [Abstract] [Full Text] [Related]

  • 6. Validation of deep learning-based computer-aided detection software use for interpretation of pulmonary abnormalities on chest radiographs and examination of factors that influence readers' performance and final diagnosis.
    Toda N, Hashimoto M, Iwabuchi Y, Nagasaka M, Takeshita R, Yamada M, Yamada Y, Jinzaki M.
    Jpn J Radiol; 2023 Jan 23; 41(1):38-44. PubMed ID: 36121622
    [Abstract] [Full Text] [Related]

  • 7. Development and Validation of a Deep Learning-Based Automated Detection Algorithm for Major Thoracic Diseases on Chest Radiographs.
    Hwang EJ, Park S, Jin KN, Kim JI, Choi SY, Lee JH, Goo JM, Aum J, Yim JJ, Cohen JG, Ferretti GR, Park CM, DLAD Development and Evaluation Group.
    JAMA Netw Open; 2019 Mar 01; 2(3):e191095. PubMed ID: 30901052
    [Abstract] [Full Text] [Related]

  • 8. New methods for using computer-aided detection information for the detection of lung nodules on chest radiographs.
    Schalekamp S, van Ginneken B, Heggelman B, Imhof-Tas M, Somers I, Brink M, Spee M, Schaefer-Prokop C, Karssemeijer N.
    Br J Radiol; 2014 Apr 01; 87(1036):20140015. PubMed ID: 24625084
    [Abstract] [Full Text] [Related]

  • 9. Computer-aided detection of malignant lung nodules on chest radiographs: effect on observers' performance.
    Lee KH, Goo JM, Park CM, Lee HJ, Jin KN.
    Korean J Radiol; 2012 Apr 01; 13(5):564-71. PubMed ID: 22977323
    [Abstract] [Full Text] [Related]

  • 10. Comparison of dual-energy subtraction and electronic bone suppression combined with computer-aided detection on chest radiographs: effect on human observers' performance in nodule detection.
    Szucs-Farkas Z, Schick A, Cullmann JL, Ebner L, Megyeri B, Vock P, Christe A.
    AJR Am J Roentgenol; 2013 May 01; 200(5):1006-13. PubMed ID: 23617482
    [Abstract] [Full Text] [Related]

  • 11. Deep Learning-based Automatic Detection Algorithm for Reducing Overlooked Lung Cancers on Chest Radiographs.
    Jang S, Song H, Shin YJ, Kim J, Kim J, Lee KW, Lee SS, Lee W, Lee S, Lee KH.
    Radiology; 2020 Sep 01; 296(3):652-661. PubMed ID: 32692300
    [No Abstract] [Full Text] [Related]

  • 12. Evaluation of computer-aided diagnosis (CAD) software for the detection of lung nodules on multidetector row computed tomography (MDCT): JAFROC study for the improvement in radiologists' diagnostic accuracy.
    Hirose T, Nitta N, Shiraishi J, Nagatani Y, Takahashi M, Murata K.
    Acad Radiol; 2008 Dec 01; 15(12):1505-12. PubMed ID: 19000867
    [Abstract] [Full Text] [Related]

  • 13. Computer-Aided Detection of Seven Chest Pathologies on Standard Posteroanterior Chest X-Rays Compared to Radiologists Reading Dual-Energy Subtracted Radiographs.
    Fischer G, De Silvestro A, Müller M, Frauenfelder T, Martini K.
    Acad Radiol; 2022 Aug 01; 29(8):e139-e148. PubMed ID: 34706849
    [Abstract] [Full Text] [Related]

  • 14. Computer-aided detection improves detection of pulmonary nodules in chest radiographs beyond the support by bone-suppressed images.
    Schalekamp S, van Ginneken B, Koedam E, Snoeren MM, Tiehuis AM, Wittenberg R, Karssemeijer N, Schaefer-Prokop CM.
    Radiology; 2014 Jul 01; 272(1):252-61. PubMed ID: 24635675
    [Abstract] [Full Text] [Related]

  • 15. Automated detection of moderate and large pneumothorax on frontal chest X-rays using deep convolutional neural networks: A retrospective study.
    Taylor AG, Mielke C, Mongan J.
    PLoS Med; 2018 Nov 01; 15(11):e1002697. PubMed ID: 30457991
    [Abstract] [Full Text] [Related]

  • 16. Identifying pulmonary nodules or masses on chest radiography using deep learning: external validation and strategies to improve clinical practice.
    Liang CH, Liu YC, Wu MT, Garcia-Castro F, Alberich-Bayarri A, Wu FZ.
    Clin Radiol; 2020 Jan 01; 75(1):38-45. PubMed ID: 31521323
    [Abstract] [Full Text] [Related]

  • 17. Effect of CAD on radiologists' detection of lung nodules on thoracic CT scans: analysis of an observer performance study by nodule size.
    Sahiner B, Chan HP, Hadjiiski LM, Cascade PN, Kazerooni EA, Chughtai AR, Poopat C, Song T, Frank L, Stojanovska J, Attili A.
    Acad Radiol; 2009 Dec 01; 16(12):1518-30. PubMed ID: 19896069
    [Abstract] [Full Text] [Related]

  • 18. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists.
    Rajpurkar P, Irvin J, Ball RL, Zhu K, Yang B, Mehta H, Duan T, Ding D, Bagul A, Langlotz CP, Patel BN, Yeom KW, Shpanskaya K, Blankenberg FG, Seekins J, Amrhein TJ, Mong DA, Halabi SS, Zucker EJ, Ng AY, Lungren MP.
    PLoS Med; 2018 Nov 01; 15(11):e1002686. PubMed ID: 30457988
    [Abstract] [Full Text] [Related]

  • 19. Computer-aided detection of lung cancer on chest radiographs: effect on observer performance.
    de Hoop B, De Boo DW, Gietema HA, van Hoorn F, Mearadji B, Schijf L, van Ginneken B, Prokop M, Schaefer-Prokop C.
    Radiology; 2010 Nov 01; 257(2):532-40. PubMed ID: 20807851
    [Abstract] [Full Text] [Related]

  • 20. Application of deep learning-based computer-aided detection system: detecting pneumothorax on chest radiograph after biopsy.
    Park S, Lee SM, Kim N, Choe J, Cho Y, Do KH, Seo JB.
    Eur Radiol; 2019 Oct 01; 29(10):5341-5348. PubMed ID: 30915557
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.