These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
131 related items for PubMed ID: 33887918
1. Analytical energy gradient for the second-order Møller-Plesset perturbation theory coupled with the reference interaction site model self-consistent field explicitly including spatial electron density distribution. Negishi N, Yokogawa D. J Chem Phys; 2021 Apr 21; 154(15):154101. PubMed ID: 33887918 [Abstract] [Full Text] [Related]
2. Analytic energy gradients for the orbital-optimized second-order Møller-Plesset perturbation theory. Bozkaya U, Sherrill CD. J Chem Phys; 2013 May 14; 138(18):184103. PubMed ID: 23676025 [Abstract] [Full Text] [Related]
3. A scaled explicitly correlated F12 correction to second-order Møller-Plesset perturbation theory. Urban L, Thompson TH, Ochsenfeld C. J Chem Phys; 2021 Jan 28; 154(4):044101. PubMed ID: 33514114 [Abstract] [Full Text] [Related]
4. Theoretical study on electronic and spin structures of [Fe2S2](2+,+) cluster: reference interaction site model self-consistent field (RISM-SCF) and multireference second-order Møller-Plesset perturbation theory (MRMP) approach. Higashi M, Kato S. J Phys Chem A; 2005 Nov 03; 109(43):9867-74. PubMed ID: 16833302 [Abstract] [Full Text] [Related]
5. Derivation of general analytic gradient expressions for density-fitted post-Hartree-Fock methods: an efficient implementation for the density-fitted second-order Møller-Plesset perturbation theory. Bozkaya U. J Chem Phys; 2014 Sep 28; 141(12):124108. PubMed ID: 25273413 [Abstract] [Full Text] [Related]
6. Analytical energy gradients for explicitly correlated wave functions. I. Explicitly correlated second-order Møller-Plesset perturbation theory. Győrffy W, Knizia G, Werner HJ. J Chem Phys; 2017 Dec 07; 147(21):214101. PubMed ID: 29221401 [Abstract] [Full Text] [Related]
7. Van der Waals interactions between hydrocarbon molecules and zeolites: periodic calculations at different levels of theory, from density functional theory to the random phase approximation and Møller-Plesset perturbation theory. Göltl F, Grüneis A, Bučko T, Hafner J. J Chem Phys; 2012 Sep 21; 137(11):114111. PubMed ID: 22998253 [Abstract] [Full Text] [Related]
8. A Resolution-Of-The-Identity Implementation of the Local Triatomics-In-Molecules Model for Second-Order Møller-Plesset Perturbation Theory with Application to Alanine Tetrapeptide Conformational Energies. DiStasio RA, Jung Y, Head-Gordon M. J Chem Theory Comput; 2005 Sep 21; 1(5):862-76. PubMed ID: 26641903 [Abstract] [Full Text] [Related]
9. Improving the accuracy of Møller-Plesset perturbation theory with neural networks. McGibbon RT, Taube AG, Donchev AG, Siva K, Hernández F, Hargus C, Law KH, Klepeis JL, Shaw DE. J Chem Phys; 2017 Oct 28; 147(16):161725. PubMed ID: 29096510 [Abstract] [Full Text] [Related]
10. An improved algorithm for analytical gradient evaluation in resolution-of-the-identity second-order Møller-Plesset perturbation theory: application to alanine tetrapeptide conformational analysis. Distasio RA, Steele RP, Rhee YM, Shao Y, Head-Gordon M. J Comput Chem; 2007 Apr 15; 28(5):839-56. PubMed ID: 17219361 [Abstract] [Full Text] [Related]
11. Correlated one-body potential from second-order Møller-Plesset perturbation theory: alternative to orbital-optimized MP2 method. Lan TN, Yanai T. J Chem Phys; 2013 Jun 14; 138(22):224108. PubMed ID: 23781784 [Abstract] [Full Text] [Related]
12. Accurate interaction energies by spin component scaled Möller-Plesset second order perturbation theory calculations with optimized basis sets (SCS-MP2mod): Development and application to aromatic heterocycles. Cacelli I, Lipparini F, Greff da Silveira L, Jacobs M, Livotto PR, Prampolini G. J Chem Phys; 2019 Jun 21; 150(23):234113. PubMed ID: 31228912 [Abstract] [Full Text] [Related]
13. Homogeneous and heterogeneous noncovalent dimers of formaldehyde and thioformaldehyde: structures, energetics, and vibrational frequencies. Van Dornshuld E, Holy CM, Tschumper GS. J Phys Chem A; 2014 May 08; 118(18):3376-85. PubMed ID: 24766482 [Abstract] [Full Text] [Related]
14. Analytic energy gradients for the orbital-optimized third-order Møller-Plesset perturbation theory. Bozkaya U. J Chem Phys; 2013 Sep 14; 139(10):104116. PubMed ID: 24050337 [Abstract] [Full Text] [Related]
16. The origin of deficiency of the supermolecule second-order Moller-Plesset approach for evaluating interaction energies. Cybulski SM, Lytle ML. J Chem Phys; 2007 Oct 14; 127(14):141102. PubMed ID: 17935376 [Abstract] [Full Text] [Related]
17. Improved supermolecular second order Møller-Plesset intermolecular interaction energies using time-dependent density functional response theory. Hesselmann A. J Chem Phys; 2008 Apr 14; 128(14):144112. PubMed ID: 18412428 [Abstract] [Full Text] [Related]
18. Analytical energy gradients for local second-order Møller-Plesset perturbation theory using density fitting approximations. Schütz M, Werner HJ, Lindh R, Manby FR. J Chem Phys; 2004 Jul 08; 121(2):737-50. PubMed ID: 15260600 [Abstract] [Full Text] [Related]
19. Calculation of the inner-shell contribution to the correlation energy through DLPNO-CEPA/1 and scaled same-spin second-order Møller-Plesset perturbation theory. Sánchez HR. J Comput Chem; 2020 Apr 15; 41(10):1012-1017. PubMed ID: 31975421 [Abstract] [Full Text] [Related]
20. Molecular gradient for second-order Møller-Plesset perturbation theory using the divide-expand-consolidate (DEC) scheme. Kristensen K, Jørgensen P, Jansík B, Kjærgaard T, Reine S. J Chem Phys; 2012 Sep 21; 137(11):114102. PubMed ID: 22998244 [Abstract] [Full Text] [Related] Page: [Next] [New Search]