These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


233 related items for PubMed ID: 33901442

  • 21. Characterization of cholesterol-sphingomyelin domains and their dynamics in bilayer membranes.
    Samsonov AV, Mihalyov I, Cohen FS.
    Biophys J; 2001 Sep; 81(3):1486-500. PubMed ID: 11509362
    [Abstract] [Full Text] [Related]

  • 22. Key molecular requirements for raft formation in lipid/cholesterol membranes.
    Hakobyan D, Heuer A.
    PLoS One; 2014 Sep; 9(2):e87369. PubMed ID: 24498317
    [Abstract] [Full Text] [Related]

  • 23. Coupling of cholesterol-rich lipid phases in asymmetric bilayers.
    Wan C, Kiessling V, Tamm LK.
    Biochemistry; 2008 Feb 19; 47(7):2190-8. PubMed ID: 18215072
    [Abstract] [Full Text] [Related]

  • 24. Domain formation in model membranes studied by pulsed-field gradient-NMR: the role of lipid polyunsaturation.
    Filippov A, Orädd G, Lindblom G.
    Biophys J; 2007 Nov 01; 93(9):3182-90. PubMed ID: 17660319
    [Abstract] [Full Text] [Related]

  • 25. Phase diagram of ternary cholesterol/palmitoylsphingomyelin/palmitoyloleoyl-phosphatidylcholine mixtures: spin-label EPR study of lipid-raft formation.
    Ionova IV, Livshits VA, Marsh D.
    Biophys J; 2012 Apr 18; 102(8):1856-65. PubMed ID: 22768941
    [Abstract] [Full Text] [Related]

  • 26. Cholesterol and cholesterol bilayer domains inhibit binding of alpha-crystallin to the membranes made of the major phospholipids of eye lens fiber cell plasma membranes.
    Timsina R, Trossi-Torres G, O'Dell M, Khadka NK, Mainali L.
    Exp Eye Res; 2021 May 18; 206():108544. PubMed ID: 33744256
    [Abstract] [Full Text] [Related]

  • 27. Role of cholesterol in the formation and nature of lipid rafts in planar and spherical model membranes.
    Crane JM, Tamm LK.
    Biophys J; 2004 May 18; 86(5):2965-79. PubMed ID: 15111412
    [Abstract] [Full Text] [Related]

  • 28. Influence of docosahexaenoic acid and cholesterol on lateral lipid organization in phospholipid mixtures.
    Huster D, Arnold K, Gawrisch K.
    Biochemistry; 1998 Dec 08; 37(49):17299-308. PubMed ID: 9860844
    [Abstract] [Full Text] [Related]

  • 29. Simulations of simple Bovine and Homo sapiens outer cortex ocular lens membrane models with a majority concentration of cholesterol.
    Adams M, Wang E, Zhuang X, Klauda JB.
    Biochim Biophys Acta Biomembr; 2018 Oct 08; 1860(10):2134-2144. PubMed ID: 29169746
    [Abstract] [Full Text] [Related]

  • 30. Insight into the putative specific interactions between cholesterol, sphingomyelin, and palmitoyl-oleoyl phosphatidylcholine.
    Aittoniemi J, Niemelä PS, Hyvönen MT, Karttunen M, Vattulainen I.
    Biophys J; 2007 Feb 15; 92(4):1125-37. PubMed ID: 17114220
    [Abstract] [Full Text] [Related]

  • 31. Homogeneous and Heterogeneous Bilayers of Ternary Lipid Compositions Containing Equimolar Ceramide and Cholesterol.
    González-Ramírez EJ, Artetxe I, García-Arribas AB, Goñi FM, Alonso A.
    Langmuir; 2019 Apr 16; 35(15):5305-5315. PubMed ID: 30924341
    [Abstract] [Full Text] [Related]

  • 32. Visualization of Lipid Membrane Reorganization Induced by a Pore-Forming Toxin Using High-Speed Atomic Force Microscopy.
    Yilmaz N, Kobayashi T.
    ACS Nano; 2015 Aug 25; 9(8):7960-7. PubMed ID: 26222645
    [Abstract] [Full Text] [Related]

  • 33. Detection of lipid domains in docasahexaenoic acid-rich bilayers by acyl chain-specific FRET probes.
    Stillwell W, Jenski LJ, Zerouga M, Dumaual AC.
    Chem Phys Lipids; 2000 Feb 25; 104(2):113-32. PubMed ID: 10669305
    [Abstract] [Full Text] [Related]

  • 34. Nanoscopic lipid domain dynamics revealed by atomic force microscopy.
    Tokumasu F, Jin AJ, Feigenson GW, Dvorak JA.
    Biophys J; 2003 Apr 25; 84(4):2609-18. PubMed ID: 12668469
    [Abstract] [Full Text] [Related]

  • 35. Elasticity, strength, and water permeability of bilayers that contain raft microdomain-forming lipids.
    Rawicz W, Smith BA, McIntosh TJ, Simon SA, Evans E.
    Biophys J; 2008 Jun 25; 94(12):4725-36. PubMed ID: 18339739
    [Abstract] [Full Text] [Related]

  • 36. Probing lipid-cholesterol interactions in DOPC/eSM/Chol and DOPC/DPPC/Chol model lipid rafts with DSC and (13)C solid-state NMR.
    Fritzsching KJ, Kim J, Holland GP.
    Biochim Biophys Acta; 2013 Aug 25; 1828(8):1889-98. PubMed ID: 23567917
    [Abstract] [Full Text] [Related]

  • 37. The effect of cholesterol on the lateral diffusion of phospholipids in oriented bilayers.
    Filippov A, Orädd G, Lindblom G.
    Biophys J; 2003 May 25; 84(5):3079-86. PubMed ID: 12719238
    [Abstract] [Full Text] [Related]

  • 38. Docosahexaenoic acid regulates the formation of lipid rafts: A unified view from experiment and simulation.
    Wassall SR, Leng X, Canner SW, Pennington ER, Kinnun JJ, Cavazos AT, Dadoo S, Johnson D, Heberle FA, Katsaras J, Shaikh SR.
    Biochim Biophys Acta Biomembr; 2018 Oct 25; 1860(10):1985-1993. PubMed ID: 29730243
    [Abstract] [Full Text] [Related]

  • 39. Characterization of the ternary mixture of sphingomyelin, POPC, and cholesterol: support for an inhomogeneous lipid distribution at high temperatures.
    Bunge A, Müller P, Stöckl M, Herrmann A, Huster D.
    Biophys J; 2008 Apr 01; 94(7):2680-90. PubMed ID: 18178660
    [Abstract] [Full Text] [Related]

  • 40. Toward a better raft model: modulated phases in the four-component bilayer, DSPC/DOPC/POPC/CHOL.
    Goh SL, Amazon JJ, Feigenson GW.
    Biophys J; 2013 Feb 19; 104(4):853-62. PubMed ID: 23442964
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.