These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


230 related items for PubMed ID: 33910991

  • 21. RelA/DTD-mediated regulation of spore formation and toxin production by Clostridium perfringens type A strain SM101.
    Saito R, Talukdar PK, Alanazi SS, Sarker MR.
    Microbiology (Reading); 2018 May; 164(5):835-847. PubMed ID: 29624163
    [Abstract] [Full Text] [Related]

  • 22. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates.
    Li J, McClane BA.
    PLoS Pathog; 2008 May 02; 4(5):e1000056. PubMed ID: 18451983
    [Abstract] [Full Text] [Related]

  • 23. Heat resistance differences are common between both vegetative cells and spores of Clostridium perfringens type F isolates carrying a chromosomal vs plasmid-borne enterotoxin gene.
    Mehdizadeh Gohari I, Li J, Shivers R, Sparks SG, McClane BA.
    Appl Environ Microbiol; 2024 Oct 23; 90(10):e0091424. PubMed ID: 39291987
    [Abstract] [Full Text] [Related]

  • 24. Differential outgrowth potential of Clostridium perfringens food-borne isolates with various cpe-genotypes in vacuum-packed ground beef during storage at 12°C.
    Xiao Y, Wagendorp A, Abee T, Wells-Bennik MH.
    Int J Food Microbiol; 2015 Feb 02; 194():40-5. PubMed ID: 25461607
    [Abstract] [Full Text] [Related]

  • 25.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. Nitrate salts suppress sporulation and production of enterotoxin in Clostridium perfringens strain NCTC8239.
    Yasugi M, Otsuka K, Miyake M.
    Microbiol Immunol; 2016 Oct 02; 60(10):657-668. PubMed ID: 27594514
    [Abstract] [Full Text] [Related]

  • 28. Regulated expression of Clostridium perfringens enterotoxin in naturally cpe-negative type A, B, and C isolates of C. perfringens.
    Czeczulin JR, Collie RE, McClane BA.
    Infect Immun; 1996 Aug 02; 64(8):3301-9. PubMed ID: 8757868
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30. The CcpA protein is necessary for efficient sporulation and enterotoxin gene (cpe) regulation in Clostridium perfringens.
    Varga J, Stirewalt VL, Melville SB.
    J Bacteriol; 2004 Aug 02; 186(16):5221-9. PubMed ID: 15292123
    [Abstract] [Full Text] [Related]

  • 31. PCR identification of the plasmid-borne enterotoxin gene (cpe) in Clostridium perfringens strains isolated from food poisoning outbreaks.
    Nakamura M, Kato A, Tanaka D, Gyobu Y, Higaki S, Karasawa T, Yamagishi T.
    Int J Med Microbiol; 2004 Oct 02; 294(4):261-5. PubMed ID: 15532984
    [Abstract] [Full Text] [Related]

  • 32. Transcriptional Profile during Deoxycholate-Induced Sporulation in a Clostridium perfringens Isolate Causing Foodborne Illness.
    Yasugi M, Okuzaki D, Kuwana R, Takamatsu H, Fujita M, Sarker MR, Miyake M.
    Appl Environ Microbiol; 2016 May 15; 82(10):2929-2942. PubMed ID: 26969700
    [Abstract] [Full Text] [Related]

  • 33. Association of beta2 toxin production with Clostridium perfringens type A human gastrointestinal disease isolates carrying a plasmid enterotoxin gene.
    Fisher DJ, Miyamoto K, Harrison B, Akimoto S, Sarker MR, McClane BA.
    Mol Microbiol; 2005 May 15; 56(3):747-62. PubMed ID: 15819629
    [Abstract] [Full Text] [Related]

  • 34. Sporulation and enterotoxin (CPE) synthesis are controlled by the sporulation-specific sigma factors SigE and SigK in Clostridium perfringens.
    Harry KH, Zhou R, Kroos L, Melville SB.
    J Bacteriol; 2009 Apr 15; 191(8):2728-42. PubMed ID: 19201796
    [Abstract] [Full Text] [Related]

  • 35. Clostridium perfringens and foodborne infections.
    Brynestad S, Granum PE.
    Int J Food Microbiol; 2002 Apr 05; 74(3):195-202. PubMed ID: 11981970
    [Abstract] [Full Text] [Related]

  • 36.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 37. Clostridium perfringens Sialidases: Potential Contributors to Intestinal Pathogenesis and Therapeutic Targets.
    Li J, Uzal FA, McClane BA.
    Toxins (Basel); 2016 Nov 19; 8(11):. PubMed ID: 27869757
    [Abstract] [Full Text] [Related]

  • 38. Further comparison of temperature effects on growth and survival of Clostridium perfringens type A isolates carrying a chromosomal or plasmid-borne enterotoxin gene.
    Li J, McClane BA.
    Appl Environ Microbiol; 2006 Jul 19; 72(7):4561-8. PubMed ID: 16820444
    [Abstract] [Full Text] [Related]

  • 39. Comparative experiments to examine the effects of heating on vegetative cells and spores of Clostridium perfringens isolates carrying plasmid genes versus chromosomal enterotoxin genes.
    Sarker MR, Shivers RP, Sparks SG, Juneja VK, McClane BA.
    Appl Environ Microbiol; 2000 Aug 19; 66(8):3234-40. PubMed ID: 10919775
    [Abstract] [Full Text] [Related]

  • 40. Porcine Clostridium perfringens type A spores, enterotoxin and antibody to enterotoxin.
    Estrada Correa AE, Taylor DJ.
    Vet Rec; 1989 Jun 10; 124(23):606-10. PubMed ID: 2547268
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 12.