These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Expression and localization of the calmodulin-binding protein neurogranin in the adult mouse olfactory bulb. Gribaudo S, Bovetti S, Garzotto D, Fasolo A, De Marchis S. J Comp Neurol; 2009 Dec 10; 517(5):683-94. PubMed ID: 19827160 [Abstract] [Full Text] [Related]
3. A Subtype of Olfactory Bulb Interneurons Is Required for Odor Detection and Discrimination Behaviors. Takahashi H, Ogawa Y, Yoshihara S, Asahina R, Kinoshita M, Kitano T, Kitsuki M, Tatsumi K, Okuda M, Tatsumi K, Wanaka A, Hirai H, Stern PL, Tsuboi A. J Neurosci; 2016 Aug 03; 36(31):8210-27. PubMed ID: 27488640 [Abstract] [Full Text] [Related]
4. Transitory and activity-dependent expression of neurogranin in olfactory bulb tufted cells during mouse postnatal development. Gribaudo S, Bovetti S, Friard O, Denorme M, Oboti L, Fasolo A, De Marchis S. J Comp Neurol; 2012 Oct 01; 520(14):3055-69. PubMed ID: 22592880 [Abstract] [Full Text] [Related]
5. Interneurons produced in adulthood are required for the normal functioning of the olfactory bulb network and for the execution of selected olfactory behaviors. Breton-Provencher V, Lemasson M, Peralta MR, Saghatelyan A. J Neurosci; 2009 Dec 02; 29(48):15245-57. PubMed ID: 19955377 [Abstract] [Full Text] [Related]
6. Olfactory learning promotes input-specific synaptic plasticity in adult-born neurons. Lepousez G, Nissant A, Bryant AK, Gheusi G, Greer CA, Lledo PM. Proc Natl Acad Sci U S A; 2014 Sep 23; 111(38):13984-9. PubMed ID: 25189772 [Abstract] [Full Text] [Related]
7. Adult neurogenesis promotes synaptic plasticity in the olfactory bulb. Nissant A, Bardy C, Katagiri H, Murray K, Lledo PM. Nat Neurosci; 2009 Jun 23; 12(6):728-30. PubMed ID: 19412168 [Abstract] [Full Text] [Related]
9. Task Learning Promotes Plasticity of Interneuron Connectivity Maps in the Olfactory Bulb. Huang L, Ung K, Garcia I, Quast KB, Cordiner K, Saggau P, Arenkiel BR. J Neurosci; 2016 Aug 24; 36(34):8856-71. PubMed ID: 27559168 [Abstract] [Full Text] [Related]
10. Environmental enrichment enhances neurogranin expression and hippocampal learning and memory but fails to rescue the impairments of neurogranin null mutant mice. Huang FL, Huang KP, Wu J, Boucheron C. J Neurosci; 2006 Jun 07; 26(23):6230-7. PubMed ID: 16763030 [Abstract] [Full Text] [Related]
11. Functional Specialization of Interneuron Dendrites: Identification of Action Potential Initiation Zone in Axonless Olfactory Bulb Granule Cells. Pressler RT, Strowbridge BW. J Neurosci; 2019 Dec 04; 39(49):9674-9688. PubMed ID: 31662426 [Abstract] [Full Text] [Related]
12. Odor preference and olfactory memory are impaired in Olfaxin-deficient mice. Islam S, Ueda M, Nishida E, Wang MX, Osawa M, Lee D, Itoh M, Nakagawa K, Tana, Nakagawa T. Brain Res; 2018 Jun 01; 1688():81-90. PubMed ID: 29571668 [Abstract] [Full Text] [Related]
13. BDNF over-expression increases olfactory bulb granule cell dendritic spine density in vivo. McDole B, Isgor C, Pare C, Guthrie K. Neuroscience; 2015 Sep 24; 304():146-60. PubMed ID: 26211445 [Abstract] [Full Text] [Related]
14. CPEB4-Dependent Neonate-Born Granule Cells Are Required for Olfactory Discrimination. Tseng CS, Chou SJ, Huang YS. Front Behav Neurosci; 2019 Sep 24; 13():5. PubMed ID: 30728769 [Abstract] [Full Text] [Related]
15. Participation of NMDA-mediated phosphorylation and oxidation of neurogranin in the regulation of Ca2+- and Ca2+/calmodulin-dependent neuronal signaling in the hippocampus. Wu J, Huang KP, Huang FL. J Neurochem; 2003 Sep 24; 86(6):1524-33. PubMed ID: 12950461 [Abstract] [Full Text] [Related]
16. Npas4 regulates Mdm2 and thus Dcx in experience-dependent dendritic spine development of newborn olfactory bulb interneurons. Yoshihara S, Takahashi H, Nishimura N, Kinoshita M, Asahina R, Kitsuki M, Tatsumi K, Furukawa-Hibi Y, Hirai H, Nagai T, Yamada K, Tsuboi A. Cell Rep; 2014 Aug 07; 8(3):843-57. PubMed ID: 25088421 [Abstract] [Full Text] [Related]
17. Persistent Structural Plasticity Optimizes Sensory Information Processing in the Olfactory Bulb. Sailor KA, Valley MT, Wiechert MT, Riecke H, Sun GJ, Adams W, Dennis JC, Sharafi S, Ming GL, Song H, Lledo PM. Neuron; 2016 Jul 20; 91(2):384-96. PubMed ID: 27373833 [Abstract] [Full Text] [Related]
18. CCKergic Tufted Cells Differentially Drive Two Anatomically Segregated Inhibitory Circuits in the Mouse Olfactory Bulb. Sun X, Liu X, Starr ER, Liu S. J Neurosci; 2020 Aug 05; 40(32):6189-6206. PubMed ID: 32605937 [Abstract] [Full Text] [Related]
19. Olfactory enrichment influences adult neurogenesis modulating GAD67 and plasticity-related molecules expression in newborn cells of the olfactory bulb. Bovetti S, Veyrac A, Peretto P, Fasolo A, De Marchis S. PLoS One; 2009 Jul 23; 4(7):e6359. PubMed ID: 19626121 [Abstract] [Full Text] [Related]
20. Postsynaptic gephyrin clustering controls the development of adult-born granule cells in the olfactory bulb. Deprez F, Pallotto M, Vogt F, Grabiec M, Virtanen MA, Tyagarajan SK, Panzanelli P, Fritschy JM. J Comp Neurol; 2015 Sep 01; 523(13):1998-2016. PubMed ID: 25772192 [Abstract] [Full Text] [Related] Page: [Next] [New Search]