These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 33930685
1. Electrolytic transesterification of waste frying oil using Na+/zeolite-chitosan biocomposite for biodiesel production. Fereidooni L, Abbaspourrad A, Enayati M. Waste Manag; 2021 May 15; 127():48-62. PubMed ID: 33930685 [Abstract] [Full Text] [Related]
2. Smart waste management of waste cooking oil for large scale high quality biodiesel production using Sr-Ti mixed metal oxide as solid catalyst: Optimization and E-metrics studies. Sahani S, Roy T, Sharma YC. Waste Manag; 2020 May 01; 108():189-201. PubMed ID: 32360999 [Abstract] [Full Text] [Related]
6. Production of biodiesel from salvia mirzayanii oil via electrolysis using KOH/Clinoptilolite as catalyst. Helmi M, Hemmati A, Tahvildari K. J Environ Health Sci Eng; 2022 Jun 01; 20(1):187-204. PubMed ID: 35669796 [Abstract] [Full Text] [Related]
7. Biodiesel production from palm oil using calcined waste animal bone as catalyst. Obadiah A, Swaroopa GA, Kumar SV, Jeganathan KR, Ramasubbu A. Bioresour Technol; 2012 Jul 01; 116():512-6. PubMed ID: 22595096 [Abstract] [Full Text] [Related]
8. Enhanced biodiesel production from waste cooking palm oil, with NaOH-loaded Calcined fish bones as the catalyst. Chinglenthoiba C, Das A, Vandana S. Environ Sci Pollut Res Int; 2020 May 01; 27(13):15925-15930. PubMed ID: 32207016 [Abstract] [Full Text] [Related]
9. Improving fatty acid methyl ester production yield in a lipase-catalyzed process using waste frying oils as feedstock. Azócar L, Ciudad G, Heipieper HJ, Muñoz R, Navia R. J Biosci Bioeng; 2010 Jun 01; 109(6):609-14. PubMed ID: 20471601 [Abstract] [Full Text] [Related]
10. KNO3-Loaded Coffee Husk Ash as a Heterogeneous Alkali Catalyst for Waste Frying Oil Valorization into Biodiesel. Bekele DT, Shibeshi NT, Reshad AS. ACS Omega; 2022 Dec 13; 7(49):45129-45143. PubMed ID: 36530280 [Abstract] [Full Text] [Related]
13. The modeling and analysis of transesterification reaction conditions in the selection of optimal biodiesel yield and viscosity. Gülüm M, Yesilyurt MK, Bilgin A. Environ Sci Pollut Res Int; 2020 Apr 13; 27(10):10351-10366. PubMed ID: 31939010 [Abstract] [Full Text] [Related]
14. Process dynamic investigations and emission analyses of biodiesel produced using Sr-Ce mixed metal oxide heterogeneous catalyst. Banerjee S, Sahani S, Chandra Sharma Y. J Environ Manage; 2019 Oct 15; 248():109218. PubMed ID: 31319198 [Abstract] [Full Text] [Related]
17. Lipase-catalyzed process in an anhydrous medium with enzyme reutilization to produce biodiesel with low acid value. Azócar L, Ciudad G, Heipieper HJ, Muñoz R, Navia R. J Biosci Bioeng; 2011 Dec 15; 112(6):583-9. PubMed ID: 21889401 [Abstract] [Full Text] [Related]
18. Sodium titanate nanotubes for efficient transesterification of oils into biodiesel. Zaki AH, Naeim AA, El-Dek SI. Environ Sci Pollut Res Int; 2019 Dec 15; 26(36):36388-36400. PubMed ID: 31724127 [Abstract] [Full Text] [Related]
19. Biodiesel Production by Methanolysis of Rapeseed Oil-Influence of SiO2/Al2O3 Ratio in BEA Zeolite Structure on Physicochemical and Catalytic Properties of Zeolite Systems with Alkaline Earth Oxides (MgO, CaO, SrO). Szkudlarek Ł, Chałupka-Śpiewak K, Maniukiewicz W, Nowosielska M, Szynkowska-Jóźwik MI, Mierczyński P. Int J Mol Sci; 2024 Mar 22; 25(7):. PubMed ID: 38612389 [Abstract] [Full Text] [Related]
20. Nano-sulfated zirconia catalyzed biodiesel production from tannery waste sheep fat. Booramurthy VK, Kasimani R, Pandian S, Ragunathan B. Environ Sci Pollut Res Int; 2020 Jun 22; 27(17):20598-20605. PubMed ID: 32036538 [Abstract] [Full Text] [Related] Page: [Next] [New Search]