These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


161 related items for PubMed ID: 33932565

  • 1. Quantitative model analysis of the resting membrane potential in insect skeletal muscle: Implications for low temperature tolerance.
    Bayley JS, Overgaard J, Pedersen TH.
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Jul; 257():110970. PubMed ID: 33932565
    [Abstract] [Full Text] [Related]

  • 2. Cold acclimation increases depolarization resistance and tolerance in muscle fibers from a chill-susceptible insect, Locusta migratoria.
    Bayley JS, Sørensen JG, Moos M, Koštál V, Overgaard J.
    Am J Physiol Regul Integr Comp Physiol; 2020 Oct 01; 319(4):R439-R447. PubMed ID: 32847398
    [Abstract] [Full Text] [Related]

  • 3. Cold acclimation improves chill tolerance in the migratory locust through preservation of ion balance and membrane potential.
    Andersen MK, Folkersen R, MacMillan HA, Overgaard J.
    J Exp Biol; 2017 Feb 01; 220(Pt 3):487-496. PubMed ID: 27903702
    [Abstract] [Full Text] [Related]

  • 4. Cold-induced depolarization of insect muscle: differing roles of extracellular K+ during acute and chronic chilling.
    MacMillan HA, Findsen A, Pedersen TH, Overgaard J.
    J Exp Biol; 2014 Aug 15; 217(Pt 16):2930-8. PubMed ID: 24902750
    [Abstract] [Full Text] [Related]

  • 5. Why do insects enter and recover from chill coma? Low temperature and high extracellular potassium compromise muscle function in Locusta migratoria.
    Findsen A, Pedersen TH, Petersen AG, Nielsen OB, Overgaard J.
    J Exp Biol; 2014 Apr 15; 217(Pt 8):1297-306. PubMed ID: 24744424
    [Abstract] [Full Text] [Related]

  • 6. Cold tolerance is linked to osmoregulatory function of the hindgut in Locusta migratoria.
    Gerber L, Overgaard J.
    J Exp Biol; 2018 Mar 07; 221(Pt 5):. PubMed ID: 29361604
    [Abstract] [Full Text] [Related]

  • 7. Concurrent effects of cold and hyperkalaemia cause insect chilling injury.
    MacMillan HA, Baatrup E, Overgaard J.
    Proc Biol Sci; 2015 Oct 22; 282(1817):20151483. PubMed ID: 26468241
    [Abstract] [Full Text] [Related]

  • 8. Feeding impairs chill coma recovery in the migratory locust (Locusta migratoria).
    Andersen JL, Findsen A, Overgaard J.
    J Insect Physiol; 2013 Oct 22; 59(10):1041-8. PubMed ID: 23932963
    [Abstract] [Full Text] [Related]

  • 9. Rapid cold hardening improves recovery of ion homeostasis and chill coma recovery time in the migratory locust, Locusta migratoria.
    Findsen A, Andersen JL, Calderon S, Overgaard J.
    J Exp Biol; 2013 May 01; 216(Pt 9):1630-7. PubMed ID: 23348947
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. Motor patterning, ion regulation and spreading depolarization during CNS shutdown induced by experimental anoxia in Locusta migratoria.
    Robertson RM, Van Dusen RA.
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Oct 01; 260():111022. PubMed ID: 34182123
    [Abstract] [Full Text] [Related]

  • 12. Effects of brief chilling and desiccation on ion homeostasis in the central nervous system of the migratory locust, Locusta migratoria.
    Gantz JD, Spong KE, Seroogy EA, Robertson RM, Lee RE.
    Comp Biochem Physiol A Mol Integr Physiol; 2020 Nov 01; 249():110774. PubMed ID: 32712084
    [Abstract] [Full Text] [Related]

  • 13. Maintenance of hindgut reabsorption during cold exposure is a key adaptation for Drosophila cold tolerance.
    Andersen MK, Overgaard J.
    J Exp Biol; 2020 Feb 25; 223(Pt 4):. PubMed ID: 31953360
    [Abstract] [Full Text] [Related]

  • 14. Cold acclimation preserves hindgut reabsorption capacity at low temperature in a chill-susceptible insect, Locusta migratoria.
    Gerber L, Kresse JC, Šimek P, Berková P, Overgaard J.
    Comp Biochem Physiol A Mol Integr Physiol; 2021 Feb 25; 252():110850. PubMed ID: 33221397
    [Abstract] [Full Text] [Related]

  • 15. Factors affecting membrane permeability and ionic homeostasis in the cold-submerged frog.
    Donohoe PH, West TG, Boutilier RG.
    J Exp Biol; 2000 Jan 25; 203(Pt 2):405-14. PubMed ID: 10607550
    [Abstract] [Full Text] [Related]

  • 16. Cold exposure causes cell death by depolarization-mediated Ca2+ overload in a chill-susceptible insect.
    Bayley JS, Winther CB, Andersen MK, Grønkjær C, Nielsen OB, Pedersen TH, Overgaard J.
    Proc Natl Acad Sci U S A; 2018 Oct 09; 115(41):E9737-E9744. PubMed ID: 30254178
    [Abstract] [Full Text] [Related]

  • 17.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 18. Characteristics of ionic transport processes in fish intestinal epithelial cells.
    Movileanu L, Flonta ML, Mihailescu D, Frangopol PT.
    Biosystems; 1998 Feb 09; 45(2):123-40. PubMed ID: 9544403
    [Abstract] [Full Text] [Related]

  • 19. Physiological correlates of chill susceptibility in Lepidoptera.
    Andersen MK, Jensen SO, Overgaard J.
    J Insect Physiol; 2017 Apr 09; 98():317-326. PubMed ID: 28188725
    [Abstract] [Full Text] [Related]

  • 20. Ionic permeability of K, Na, and Cl in potassium-depolarized nerve. Dependency on pH, cooperative effects, and action of tetrodotoxin.
    Strickholm A.
    Biophys J; 1981 Sep 09; 35(3):677-97. PubMed ID: 7272457
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 9.