These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Band-gap-graded Cu2ZnSn(S1-x,Se(x))4 solar cells fabricated by an ethanol-based, particulate precursor ink route. Woo K, Kim Y, Yang W, Kim K, Kim I, Oh Y, Kim JY, Moon J. Sci Rep; 2013 Oct 29; 3():3069. PubMed ID: 24166151 [Abstract] [Full Text] [Related]
23. Selenization of Cu2ZnSnS4 Enhanced the Performance of Dye-Sensitized Solar Cells: Improved Zinc-Site Catalytic Activity for I3. Wang X, Xie Y, Bateer B, Pan K, Jiao Y, Xiong N, Wang S, Fu H. ACS Appl Mater Interfaces; 2017 Nov 01; 9(43):37662-37670. PubMed ID: 29019395 [Abstract] [Full Text] [Related]
24. Enhancement of Cu2ZnSn(S, Se)4 device performance using an IPA/MOE hybrid solvent system in ambient air. Zhou Z, Hu X, Song Q, Zhao Y, Chen Y, Wu L, Zhang Y, Su X, Wang S. Phys Chem Chem Phys; 2024 Aug 07; 26(31):21052-21060. PubMed ID: 39054907 [Abstract] [Full Text] [Related]
25. Phase-Separation-Induced Crystal Growth for Large-Grained Cu2ZnSn(S,Se)4 Thin Film. Huang L, Wei S, Pan D. ACS Appl Mater Interfaces; 2018 Oct 17; 10(41):35069-35078. PubMed ID: 30247020 [Abstract] [Full Text] [Related]
26. Synergistic Crystallization Modulation and Defects Passivation in Kesterite via Anion-Coordinate Precursor Engineering for Efficient Solar Cells. Wang L, Chu L, Zhou Z, Zhou W, Kou D, Meng Y, Qi Y, Yuan S, Han L, Yang G, Zhang Z, Zheng Z, Wu S. Adv Sci (Weinh); 2024 Sep 17; 11(35):e2405016. PubMed ID: 39031982 [Abstract] [Full Text] [Related]
27. Fabrication of Cu2ZnSn(S,Se)4 solar cells via an ethanol-based sol-gel route using SnS2 as Sn source. Zhao W, Wang G, Tian Q, Yang Y, Huang L, Pan D. ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):12650-5. PubMed ID: 25000474 [Abstract] [Full Text] [Related]
28. Cu2ZnSn(S,Se)4 thin-films prepared from selenized nanocrystals ink. Aruna-Devi R, Latha M, Velumani S, Santos-Cruz J, Murali B, Chávez-Carvayar JÁ, Pulgarín-Agudelo FA, Vigil-Galán O. RSC Adv; 2019 Jun 10; 9(32):18420-18428. PubMed ID: 35515224 [Abstract] [Full Text] [Related]
29. Kesterite Cu2Zn(Sn,Ge)(S,Se)4 thin film with controlled Ge-doping for photovoltaic application. Zhao W, Pan D, Liu SF. Nanoscale; 2016 May 21; 8(19):10160-5. PubMed ID: 27121893 [Abstract] [Full Text] [Related]
30. Enhance the Performance of CZTSSe Solar Cells Through Inhibiting the Cu2+, Tu, and (─COOH) Association Reaction. Wang L, SiQin L, Wang Y, Li S, Xin W, Guo J, Liu R, Luan H, Zhu C. Small; 2024 Dec 21; 20(50):e2405908. PubMed ID: 39359029 [Abstract] [Full Text] [Related]
31. Enhanced efficiency of Cu2ZnSn(S,Se)4 solar cells via anti-reflectance properties and surface passivation by atomic layer deposited aluminum oxide. Zhang B, Han L, Ying S, Li Y, Yao B. RSC Adv; 2018 May 22; 8(34):19213-19219. PubMed ID: 35539659 [Abstract] [Full Text] [Related]
32. Doping of Sb into Cu2ZnSn(S,Se)4 absorber layer via Se&Sb2Se3 co-selenization strategy for enhancing open-circuit voltage of kesterite solar cells. Zhao B, Deng Y, Cao L, Zhu J, Zhou Z. Front Chem; 2022 May 22; 10():974761. PubMed ID: 36017168 [Abstract] [Full Text] [Related]
33. 8.6% Efficient CZTSSe Solar Cells Sprayed from Water-Ethanol CZTS Colloidal Solutions. Larramona G, Bourdais S, Jacob A, Choné C, Muto T, Cuccaro Y, Delatouche B, Moisan C, Péré D, Dennler G. J Phys Chem Lett; 2014 Nov 06; 5(21):3763-7. PubMed ID: 26278747 [Abstract] [Full Text] [Related]
34. Insight into the Role of Rb Doping for Highly Efficient Kesterite Cu2ZnSn(S,Se)4 Solar Cells. Miao C, Sui Y, Cui Y, Wang Z, Yang L, Wang F, Liu X, Yao B. Molecules; 2024 Aug 02; 29(15):. PubMed ID: 39125076 [Abstract] [Full Text] [Related]
35. Further Boosting Solar Cell Performance via Bandgap-Graded Ag Doping in Cu2ZnSn(S,Se)4 Solar Cells Compared to Uniform Ag Doping. Zhou T, Huang J, Qian S, Wang X, Yang G, Yao B, Li Y, Jiang Y, Liu Y. ACS Appl Mater Interfaces; 2023 Jan 11; 15(1):1073-1084. PubMed ID: 36534121 [Abstract] [Full Text] [Related]
36. Improvement of J(sc) in a Cu2ZnSnS4 Solar Cell by Using a Thin Carbon Intermediate Layer at the Cu2ZnSnS4/Mo Interface. Zhou F, Zeng F, Liu X, Liu F, Song N, Yan C, Pu A, Park J, Sun K, Hao X. ACS Appl Mater Interfaces; 2015 Oct 21; 7(41):22868-73. PubMed ID: 26418196 [Abstract] [Full Text] [Related]
37. Suppressing Deep-Level Trap Toward Over 13% Efficient Solution-Processed Kesterite Solar Cell. Li Y, Jian Y, Huang F, Zhou N, Chai W, Hu J, Zhao J, Su Z, Chen S, Liang G. Small; 2024 Aug 21; 20(35):e2401330. PubMed ID: 38623959 [Abstract] [Full Text] [Related]
38. Nanoscale observation of surface potential and carrier transport in Cu2ZnSn(S,Se)4 thin films grown by sputtering-based two-step process. Kim GY, Kim JR, Jo W, Son DH, Kim DH, Kang JK. Nanoscale Res Lett; 2014 Jan 08; 9(1):10. PubMed ID: 24397924 [Abstract] [Full Text] [Related]
39. Cadmium-Free Kesterite Thin-Film Solar Cells with High Efficiency Approaching 12. Ahmad N, Zhao Y, Ye F, Zhao J, Chen S, Zheng Z, Fan P, Yan C, Li Y, Su Z, Zhang X, Liang G. Adv Sci (Weinh); 2023 Sep 08; 10(26):e2302869. PubMed ID: 37391392 [Abstract] [Full Text] [Related]
40. Elemental Precursor Solution Processed (Cu1-xAgx)2ZnSn(S,Se)4 Photovoltaic Devices with over 10% Efficiency. Qi Y, Tian Q, Meng Y, Kou D, Zhou Z, Zhou W, Wu S. ACS Appl Mater Interfaces; 2017 Jun 28; 9(25):21243-21250. PubMed ID: 28586190 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]