These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
5. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. Shen N, Zhao L, Jiang J, Jiang R, Su C, Zhang S, Tang X, Zhu W. J Magn Reson Imaging; 2016 Sep; 44(3):620-32. PubMed ID: 26880230 [Abstract] [Full Text] [Related]
6. Ki-67 labeling index and the grading of cerebral gliomas by using intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling magnetic resonance imaging. Wang C, Dong H. Acta Radiol; 2020 Aug; 61(8):1057-1063. PubMed ID: 31830431 [Abstract] [Full Text] [Related]
7. Brain T1ρ mapping for grading and IDH1 gene mutation detection of gliomas: a preliminary study. Cao M, Ding W, Han X, Suo S, Sun Y, Wang Y, Qu J, Zhang X, Zhou Y. J Neurooncol; 2019 Jan; 141(1):245-252. PubMed ID: 30414094 [Abstract] [Full Text] [Related]
9. Noninvasively evaluating the grade and IDH mutation status of gliomas by using mono-exponential, bi-exponential diffusion-weighted imaging and three-dimensional pseudo-continuous arterial spin labeling. Guo D, Jiang B. Eur J Radiol; 2023 Mar; 160():110721. PubMed ID: 36738600 [Abstract] [Full Text] [Related]
11. Noninvasively evaluating the grading and IDH1 mutation status of diffuse gliomas by three-dimensional pseudo-continuous arterial spin labeling and diffusion-weighted imaging. Liu T, Cheng G, Kang X, Xi Y, Zhu Y, Wang K, Sun C, Ye J, Li P, Yin H. Neuroradiology; 2018 Jul; 60(7):693-702. PubMed ID: 29777252 [Abstract] [Full Text] [Related]
12. Machine learning-based quantitative texture analysis of conventional MRI combined with ADC maps for assessment of IDH1 mutation in high-grade gliomas. Alis D, Bagcilar O, Senli YD, Yergin M, Isler C, Kocer N, Islak C, Kizilkilic O. Jpn J Radiol; 2020 Feb; 38(2):135-143. PubMed ID: 31741126 [Abstract] [Full Text] [Related]
13. Prediction of Isocitrate Dehydrogenase Genotype in Brain Gliomas with MRI: Single-Shell versus Multishell Diffusion Models. Figini M, Riva M, Graham M, Castelli GM, Fernandes B, Grimaldi M, Baselli G, Pessina F, Bello L, Zhang H, Bizzi A. Radiology; 2018 Dec; 289(3):788-796. PubMed ID: 30277427 [Abstract] [Full Text] [Related]
15. Noninvasive Prediction of IDH1 Mutation and ATRX Expression Loss in Low-Grade Gliomas Using Multiparametric MR Radiomic Features. Ren Y, Zhang X, Rui W, Pang H, Qiu T, Wang J, Xie Q, Jin T, Zhang H, Chen H, Zhang Y, Lu H, Yao Z, Zhang J, Feng X. J Magn Reson Imaging; 2019 Mar; 49(3):808-817. PubMed ID: 30194745 [Abstract] [Full Text] [Related]
16. Advanced imaging parameters improve the prediction of diffuse lower-grade gliomas subtype, IDH mutant with no 1p19q codeletion: added value to the T2/FLAIR mismatch sign. Lee MK, Park JE, Jo Y, Park SY, Kim SJ, Kim HS. Eur Radiol; 2020 Feb; 30(2):844-854. PubMed ID: 31446467 [Abstract] [Full Text] [Related]
17. The diagnostic efficiency of integration of 2HG MRS and IVIM versus individual parameters for predicting IDH mutation status in gliomas in clinical scenarios: A retrospective study. Yu M, Ge Y, Wang Z, Zhang Y, Hou X, Chen H, Chen X, Ji N, Li X, Shen H. J Neurooncol; 2024 Apr; 167(2):305-313. PubMed ID: 38424338 [Abstract] [Full Text] [Related]
18. [Quantitative evaluation of intravoxel incoherent motion diffusion-weighted imaging and three-dimensional arterial spin labeling in Ki-67 labeling index and grading of brain gliomas]. Wang CC, Dong HB, Ding F, Li YD, Wang GY, Ding HX. Zhonghua Yi Xue Za Zhi; 2019 Jan 29; 99(5):338-342. PubMed ID: 30772973 [Abstract] [Full Text] [Related]