These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


219 related items for PubMed ID: 33968108

  • 1. CRISPR/Cas9-Induced fad2 and rod1 Mutations Stacked With fae1 Confer High Oleic Acid Seed Oil in Pennycress (Thlaspi arvense L.).
    Jarvis BA, Romsdahl TB, McGinn MG, Nazarenus TJ, Cahoon EB, Chapman KD, Sedbrook JC.
    Front Plant Sci; 2021; 12():652319. PubMed ID: 33968108
    [Abstract] [Full Text] [Related]

  • 2. Functional analysis of β-ketoacyl-CoA synthase from biofuel feedstock Thlaspi arvense reveals differences in the triacylglycerol biosynthetic pathway among Brassicaceae.
    Claver A, de la Vega M, Rey-Giménez R, Luján MÁ, Picorel R, López MV, Alfonso M.
    Plant Mol Biol; 2020 Oct; 104(3):283-296. PubMed ID: 32740897
    [Abstract] [Full Text] [Related]

  • 3. Molecular tools enabling pennycress (Thlaspi arvense) as a model plant and oilseed cash cover crop.
    McGinn M, Phippen WB, Chopra R, Bansal S, Jarvis BA, Phippen ME, Dorn KM, Esfahanian M, Nazarenus TJ, Cahoon EB, Durrett TP, Marks MD, Sedbrook JC.
    Plant Biotechnol J; 2019 Apr; 17(4):776-788. PubMed ID: 30230695
    [Abstract] [Full Text] [Related]

  • 4. Improved fatty acid composition of field cress (Lepidium campestre) by CRISPR/Cas9-mediated genome editing.
    Sandgrind S, Li X, Ivarson E, Wang ES, Guan R, Kanagarajan S, Zhu LH.
    Front Plant Sci; 2023 Apr; 14():1076704. PubMed ID: 36755695
    [Abstract] [Full Text] [Related]

  • 5. Identification of target genes and processes involved in erucic acid accumulation during seed development in the biodiesel feedstock Pennycress (Thlaspi arvense L.).
    Claver A, Rey R, López MV, Picorel R, Alfonso M.
    J Plant Physiol; 2017 Jan; 208():7-16. PubMed ID: 27889523
    [Abstract] [Full Text] [Related]

  • 6. Identification, characterization and field testing of Brassica napus mutants producing high-oleic oils.
    Bai S, Engelen S, Denolf P, Wallis JG, Lynch K, Bengtsson JD, Van Thournout M, Haesendonckx B, Browse J.
    Plant J; 2019 Apr; 98(1):33-41. PubMed ID: 30536486
    [Abstract] [Full Text] [Related]

  • 7. Design of high-oleic tobacco (Nicotiana tabacum L.) seed oil by CRISPR-Cas9-mediated knockout of NtFAD2-2.
    Tian Y, Chen K, Li X, Zheng Y, Chen F.
    BMC Plant Biol; 2020 May 25; 20(1):233. PubMed ID: 32450806
    [Abstract] [Full Text] [Related]

  • 8. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa.
    Ozseyhan ME, Kang J, Mu X, Lu C.
    Plant Physiol Biochem; 2018 Feb 25; 123():1-7. PubMed ID: 29216494
    [Abstract] [Full Text] [Related]

  • 9. Metabolite fingerprinting of pennycress (Thlaspi arvense L.) embryos to assess active pathways during oil synthesis.
    Tsogtbaatar E, Cocuron JC, Sonera MC, Alonso AP.
    J Exp Bot; 2015 Jul 25; 66(14):4267-77. PubMed ID: 25711705
    [Abstract] [Full Text] [Related]

  • 10. Increasing Monounsaturated Fatty Acid Contents in Hexaploid Camelina sativa Seed Oil by FAD2 Gene Knockout Using CRISPR-Cas9.
    Lee KR, Jeon I, Yu H, Kim SG, Kim HS, Ahn SJ, Lee J, Lee SK, Kim HU.
    Front Plant Sci; 2021 Jul 25; 12():702930. PubMed ID: 34267775
    [Abstract] [Full Text] [Related]

  • 11. New approaches to facilitate rapid domestication of a wild plant to an oilseed crop: example pennycress (Thlaspi arvense L.).
    Sedbrook JC, Phippen WB, Marks MD.
    Plant Sci; 2014 Oct 25; 227():122-32. PubMed ID: 25219314
    [Abstract] [Full Text] [Related]

  • 12. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis.
    Park ME, Kim HU.
    Front Plant Sci; 2022 Oct 25; 13():969844. PubMed ID: 36119569
    [Abstract] [Full Text] [Related]

  • 13.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 14.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 15.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 16.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 17. Research progress on the development of pennycress (Thlaspi arvense L.) as a new seed oil crop: a review.
    Ma J, Wang H, Zhang Y.
    Front Plant Sci; 2023 Oct 25; 14():1268085. PubMed ID: 38093994
    [Abstract] [Full Text] [Related]

  • 18. Direct stacking of sequence-specific nuclease-induced mutations to produce high oleic and low linolenic soybean oil.
    Demorest ZL, Coffman A, Baltes NJ, Stoddard TJ, Clasen BM, Luo S, Retterath A, Yabandith A, Gamo ME, Bissen J, Mathis L, Voytas DF, Zhang F.
    BMC Plant Biol; 2016 Oct 13; 16(1):225. PubMed ID: 27733139
    [Abstract] [Full Text] [Related]

  • 19.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 20. Depressed expression of FAE1 and FAD2 genes modifies fatty acid profiles and storage compounds accumulation in Brassica napus seeds.
    Shi J, Lang C, Wang F, Wu X, Liu R, Zheng T, Zhang D, Chen J, Wu G.
    Plant Sci; 2017 Oct 13; 263():177-182. PubMed ID: 28818373
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 11.