These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


239 related items for PubMed ID: 33973451

  • 1.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 2. Molecular basis for the PAM expansion and fidelity enhancement of an evolved Cas9 nuclease.
    Chen W, Zhang H, Zhang Y, Wang Y, Gan J, Ji Q.
    PLoS Biol; 2019 Oct; 17(10):e3000496. PubMed ID: 31603896
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 5.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 6. Expanding the scope of CRISPR/Cas9-mediated genome editing in plants using an xCas9 and Cas9-NG hybrid.
    Niu Q, Wu S, Li Y, Yang X, Liu P, Xu Y, Lang Z.
    J Integr Plant Biol; 2020 Apr; 62(4):398-402. PubMed ID: 31702097
    [Abstract] [Full Text] [Related]

  • 7. Genome Engineering in Rice Using Cas9 Variants that Recognize NG PAM Sequences.
    Hua K, Tao X, Han P, Wang R, Zhu JK.
    Mol Plant; 2019 Jul 01; 12(7):1003-1014. PubMed ID: 30928636
    [Abstract] [Full Text] [Related]

  • 8. Improving Plant Genome Editing with High-Fidelity xCas9 and Non-canonical PAM-Targeting Cas9-NG.
    Zhong Z, Sretenovic S, Ren Q, Yang L, Bao Y, Qi C, Yuan M, He Y, Liu S, Liu X, Wang J, Huang L, Wang Y, Baby D, Wang D, Zhang T, Qi Y, Zhang Y.
    Mol Plant; 2019 Jul 01; 12(7):1027-1036. PubMed ID: 30928637
    [Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 12.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 13. Evolved Cas9 variants with broad PAM compatibility and high DNA specificity.
    Hu JH, Miller SM, Geurts MH, Tang W, Chen L, Sun N, Zeina CM, Gao X, Rees HA, Lin Z, Liu DR.
    Nature; 2018 Apr 05; 556(7699):57-63. PubMed ID: 29512652
    [Abstract] [Full Text] [Related]

  • 14. Molecular Mechanism of D1135E-Induced Discriminated CRISPR-Cas9 PAM Recognition.
    Kang M, Zuo Z, Yin Z, Gu J.
    J Chem Inf Model; 2022 Jun 27; 62(12):3057-3066. PubMed ID: 35666156
    [Abstract] [Full Text] [Related]

  • 15. Rationally Designed Anti-CRISPR Nucleic Acid Inhibitors of CRISPR-Cas9.
    Barkau CL, O'Reilly D, Rohilla KJ, Damha MJ, Gagnon KT.
    Nucleic Acid Ther; 2019 Jun 27; 29(3):136-147. PubMed ID: 30990769
    [Abstract] [Full Text] [Related]

  • 16. Genome Editing in Zebrafish by ScCas9 Recognizing NNG PAM.
    Liu Y, Liang F, Dong Z, Li S, Ye J, Qin W.
    Cells; 2021 Aug 16; 10(8):. PubMed ID: 34440868
    [Abstract] [Full Text] [Related]

  • 17. Optimization of genome editing through CRISPR-Cas9 engineering.
    Zhang JH, Adikaram P, Pandey M, Genis A, Simonds WF.
    Bioengineered; 2016 Apr 16; 7(3):166-74. PubMed ID: 27340770
    [Abstract] [Full Text] [Related]

  • 18. A detailed cell-free transcription-translation-based assay to decipher CRISPR protospacer-adjacent motifs.
    Maxwell CS, Jacobsen T, Marshall R, Noireaux V, Beisel CL.
    Methods; 2018 Jul 01; 143():48-57. PubMed ID: 29486239
    [Abstract] [Full Text] [Related]

  • 19. A Compact, High-Accuracy Cas9 with a Dinucleotide PAM for In Vivo Genome Editing.
    Edraki A, Mir A, Ibraheim R, Gainetdinov I, Yoon Y, Song CQ, Cao Y, Gallant J, Xue W, Rivera-Pérez JA, Sontheimer EJ.
    Mol Cell; 2019 Feb 21; 73(4):714-726.e4. PubMed ID: 30581144
    [Abstract] [Full Text] [Related]

  • 20. Identification and Analysis of Small Molecule Inhibitors of CRISPR-Cas9 in Human Cells.
    Yang Y, Li D, Wan F, Chen B, Wu G, Li F, Ren Y, Liang P, Wan J, Songyang Z.
    Cells; 2022 Nov 11; 11(22):. PubMed ID: 36429003
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.