These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. An effective method for remaining useful life estimation of bearings with elbow point detection and adaptive regression models. Yan M, Xie L, Muhammad I, Yang X, Liu Y. ISA Trans; 2022 Sep; 128(Pt A):290-300. PubMed ID: 34799099 [Abstract] [Full Text] [Related]
3. Joint Learning of Failure Mode Recognition and Prognostics for Degradation Processes. Wang D, Xian X, Song C. IEEE Trans Autom Sci Eng; 2024 Apr; 21(2):1421-1433. PubMed ID: 38595999 [Abstract] [Full Text] [Related]
5. Bearing remaining useful life prediction using support vector machine and hybrid degradation tracking model. Yan M, Wang X, Wang B, Chang M, Muhammad I. ISA Trans; 2020 Mar; 98():471-482. PubMed ID: 31492470 [Abstract] [Full Text] [Related]
6. The Prediction of the Remaining Useful Life of Rotating Machinery Based on an Adaptive Maximum Second-Order Cyclostationarity Blind Deconvolution and a Convolutional LSTM Autoencoder. Gao Y, Ahmad Z, Kim JM. Sensors (Basel); 2024 Apr 09; 24(8):. PubMed ID: 38675999 [Abstract] [Full Text] [Related]
7. Deep learning-based anomaly-onset aware remaining useful life estimation of bearings. Kamat PV, Sugandhi R, Kumar S. PeerJ Comput Sci; 2021 Apr 09; 7():e795. PubMed ID: 34909464 [Abstract] [Full Text] [Related]
8. Ensemble deep learning with multi-objective optimization for prognosis of rotating machinery. Ma M, Sun C, Mao Z, Chen X. ISA Trans; 2020 Oct 09. PubMed ID: 34756307 [Abstract] [Full Text] [Related]
9. A Reliable Prognosis Approach for Degradation Evaluation of Rolling Bearing Using MCLSTM. Huang G, Li H, Ou J, Zhang Y, Zhang M. Sensors (Basel); 2020 Mar 27; 20(7):. PubMed ID: 32230874 [Abstract] [Full Text] [Related]
10. Joint optimization of degradation assessment and remaining useful life prediction for bearings with temporal convolutional auto-encoder. Ding Y, Jia M, Zhao X, Yan X, Lee CG. ISA Trans; 2024 Mar 27; 146():451-462. PubMed ID: 38320915 [Abstract] [Full Text] [Related]
11. Performance Degradation Prediction Using LSTM with Optimized Parameters. Hu Y, Wei R, Yang Y, Li X, Huang Z, Liu Y, He C, Lu H. Sensors (Basel); 2022 Mar 21; 22(6):. PubMed ID: 35336579 [Abstract] [Full Text] [Related]
12. Remaining Useful Life Prediction of Rolling Bearings Based on Multi-scale Permutation Entropy and ISSA-LSTM. Wang H, Zhang X, Ren M, Xu T, Lu C, Zhao Z. Entropy (Basel); 2023 Oct 25; 25(11):. PubMed ID: 37998169 [Abstract] [Full Text] [Related]
14. Remaining Useful Life Prediction Method for Bearings Based on LSTM with Uncertainty Quantification. Yang J, Peng Y, Xie J, Wang P. Sensors (Basel); 2022 Jun 16; 22(12):. PubMed ID: 35746338 [Abstract] [Full Text] [Related]
15. Machinery Prognostics and High-Dimensional Data Feature Extraction Based on a Transformer Self-Attention Transfer Network. Sun S, Peng T, Huang H. Sensors (Basel); 2023 Nov 15; 23(22):. PubMed ID: 38005579 [Abstract] [Full Text] [Related]
16. A Cotraining-Based Semisupervised Approach for Remaining-Useful-Life Prediction of Bearings. Yan X, Xia X, Wang L, Zhang Z. Sensors (Basel); 2022 Oct 13; 22(20):. PubMed ID: 36298116 [Abstract] [Full Text] [Related]
17. Remaining Useful Life prediction of rolling bearings based on risk assessment and degradation state coefficient. Li Q, Yan C, Chen G, Wang H, Li H, Wu L. ISA Trans; 2022 Oct 13; 129(Pt B):413-428. PubMed ID: 35181005 [Abstract] [Full Text] [Related]
19. A Double-Channel Hybrid Deep Neural Network Based on CNN and BiLSTM for Remaining Useful Life Prediction. Zhao C, Huang X, Li Y, Yousaf Iqbal M. Sensors (Basel); 2020 Dec 11; 20(24):. PubMed ID: 33322457 [Abstract] [Full Text] [Related]