These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


167 related items for PubMed ID: 33999390

  • 21. Utilization of molasses and sugar cane bagasse for production of fungal invertase in solid state fermentation using Aspergillus niger GH1.
    Veana F, Martínez-Hernández JL, Aguilar CN, Rodríguez-Herrera R, Michelena G.
    Braz J Microbiol; 2014; 45(2):373-7. PubMed ID: 25242918
    [Abstract] [Full Text] [Related]

  • 22. Design of an enzyme cocktail consisting of different fungal platforms for efficient hydrolysis of sugarcane bagasse: Optimization and synergism studies.
    Méndez Arias J, Modesto LF, Polikarpov I, Pereira N.
    Biotechnol Prog; 2016 Sep; 32(5):1222-1229. PubMed ID: 27254751
    [Abstract] [Full Text] [Related]

  • 23. Composition of Synthesized Cellulolytic Enzymes Varied with the Usage of Agricultural Substrates and Microorganisms.
    Kshirsagar S, Waghmare P, Saratale G, Saratale R, Kurade M, Jeon BH, Govindwar S.
    Appl Biochem Biotechnol; 2020 Aug; 191(4):1695-1710. PubMed ID: 32206967
    [Abstract] [Full Text] [Related]

  • 24. Design and Operation of a Pilot-Scale Packed-Bed Bioreactor for the Production of Enzymes by Solid-State Fermentation.
    Mitchell DA, Pitol LO, Biz A, Finkler ATJ, de Lima Luz LF, Krieger N.
    Adv Biochem Eng Biotechnol; 2019 Aug; 169():27-50. PubMed ID: 30828754
    [Abstract] [Full Text] [Related]

  • 25. Adsorption of sugarcane vinasse effluent on bagasse fly ash: A parametric and kinetic study.
    Chingono KE, Sanganyado E, Bere E, Yalala B.
    J Environ Manage; 2018 Oct 15; 224():182-190. PubMed ID: 30048849
    [Abstract] [Full Text] [Related]

  • 26.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 27. An overview of Trichoderma reesei co-cultures for the production of lignocellulolytic enzymes.
    Sperandio GB, Filho EXF.
    Appl Microbiol Biotechnol; 2021 Apr 15; 105(8):3019-3025. PubMed ID: 33825000
    [Abstract] [Full Text] [Related]

  • 28. Liquefaction of sugarcane bagasse for enzyme production.
    Cunha FM, Kreke T, Badino AC, Farinas CS, Ximenes E, Ladisch MR.
    Bioresour Technol; 2014 Nov 15; 172():249-252. PubMed ID: 25265329
    [Abstract] [Full Text] [Related]

  • 29. Biodegradation of high concentration phenol using sugarcane bagasse immobilized Candida tropicalis PHB5 in a packed-bed column reactor.
    Basak B, Jeon BH, Kurade MB, Saratale GD, Bhunia B, Chatterjee PK, Dey A.
    Ecotoxicol Environ Saf; 2019 Sep 30; 180():317-325. PubMed ID: 31100595
    [Abstract] [Full Text] [Related]

  • 30. Adsorption characteristics of cellulase and β-glucosidase on Avicel, pretreated sugarcane bagasse, and lignin.
    Machado DL, Moreira Neto J, da Cruz Pradella JG, Bonomi A, Rabelo SC, da Costa AC.
    Biotechnol Appl Biochem; 2015 Sep 30; 62(5):681-9. PubMed ID: 25322902
    [Abstract] [Full Text] [Related]

  • 31. On-site hydrolytic enzymes production from fungal co-cultivation of Bermuda grass and corn cob.
    Amaro-Reyes A, Gracida J, Huizache-Peña N, Elizondo-García N, Salazar-Martínez J, García Almendárez BE, Regalado C.
    Bioresour Technol; 2016 Jul 30; 212():334-337. PubMed ID: 27130226
    [Abstract] [Full Text] [Related]

  • 32. Simultaneous saccharification and aerobic fermentation of high titer cellulosic citric acid by filamentous fungus Aspergillus niger.
    Hou W, Bao J.
    Bioresour Technol; 2018 Apr 30; 253():72-78. PubMed ID: 29331516
    [Abstract] [Full Text] [Related]

  • 33. Optimization of Aspergillus niger rock phosphate solubilization in solid-state fermentation and use of the resulting product as a P fertilizer.
    Mendes Gde O, da Silva NM, Anastácio TC, Vassilev NB, Ribeiro JI, da Silva IR, Costa MD.
    Microb Biotechnol; 2015 Nov 30; 8(6):930-9. PubMed ID: 26112323
    [Abstract] [Full Text] [Related]

  • 34. Trichoderma longibrachiatum and thermothelomyces thermophilus co-culture: improvement the saccharification profile of different sugarcane bagasse varieties.
    Contato AG, Nogueira KMV, Buckeridge MS, Silva RN, Polizeli MLTM.
    Biotechnol Lett; 2023 Sep 30; 45(9):1093-1102. PubMed ID: 37354337
    [Abstract] [Full Text] [Related]

  • 35. Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production.
    Kolasa M, Ahring BK, Lübeck PS, Lübeck M.
    Bioresour Technol; 2014 Oct 30; 169():143-148. PubMed ID: 25043347
    [Abstract] [Full Text] [Related]

  • 36. Ethanol production from sugarcane bagasse: Use of different fermentation strategies to enhance an environmental-friendly process.
    de Araujo Guilherme A, Dantas PVF, Padilha CEA, Dos Santos ES, de Macedo GR.
    J Environ Manage; 2019 Mar 15; 234():44-51. PubMed ID: 30599329
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. [Effects of chemically modified sugarcane bagasse on butanol production by immobilized Clostridium acetobutylicum XY16].
    Kong X, He A, Chen J, Chen W, Yin C, Chen P, Wu H, Jiang M.
    Sheng Wu Gong Cheng Xue Bao; 2014 Feb 15; 30(2):305-9. PubMed ID: 24941751
    [Abstract] [Full Text] [Related]

  • 39. Fungal rock phosphate solubilization using sugarcane bagasse.
    Mendes GO, Dias CS, Silva IR, Júnior JI, Pereira OL, Costa MD.
    World J Microbiol Biotechnol; 2013 Jan 15; 29(1):43-50. PubMed ID: 22927013
    [Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 9.