These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
99 related items for PubMed ID: 34000656
1. Regulation of heavy metals accumulated by Acorus calamus L. in constructed wetland through different nitrogen forms. Wang JF, Zhu CY, Weng BS, Mo PW, Xu ZJ, Tian P, Cui BS, Bai JH. Chemosphere; 2021 Oct; 281():130773. PubMed ID: 34000656 [Abstract] [Full Text] [Related]
2. [Influence of Biochar Application on Growth and Antioxidative Responses of Macrophytes in Subsurface Flow Constructed Wetlands]. Huang L, Chen YC, Zhao YQ, Xiao GQ, Yang ZM. Huan Jing Ke Xue; 2018 Jun 08; 39(6):2904-2910. PubMed ID: 29965649 [Abstract] [Full Text] [Related]
3. [Effect of Biochar on Root Morphological Characteristics of Wetland Plants and Purification Capacity of Constructed Wetland]. Xu DF, Pan QC, Li YX, Chen XY, Wang JJ, Zhou L. Huan Jing Ke Xue; 2018 Jul 08; 39(7):3187-3193. PubMed ID: 29962142 [Abstract] [Full Text] [Related]
4. The effect of substrates on the removal of low-level vanadium, chromium and cadmium from polluted river water by ecological floating beds. Lin H, Liu J, Dong Y, He Y. Ecotoxicol Environ Saf; 2019 Mar 08; 169():856-862. PubMed ID: 30597785 [Abstract] [Full Text] [Related]
10. [Influences of Biochar Application on Root Aerenchyma and Radial Oxygen Loss of Acorus calamus in Relation to Subsurface Flow in a Constructed Wetland]. Huang L, Liang YK, Liang Y, Luo X, Chen YC. Huan Jing Ke Xue; 2019 Mar 08; 40(3):1280-1286. PubMed ID: 31087975 [Abstract] [Full Text] [Related]
12. Acorus calamus recycled as an additional carbon source in a microbial fuel cell-constructed wetland for enhanced nitrogen removal. Tao M, Kong Y, Jing Z, Guan L, Jia Q, Shen Y, Hu M, Li YY. Bioresour Technol; 2023 Sep 08; 384():129324. PubMed ID: 37315619 [Abstract] [Full Text] [Related]
13. Nitrogen Metabolism in Acorus calamus L. Leaves Induced Changes in Response to Microcystin-LR at Environmentally Relevant Concentrations. Chen G, Li Q, Bai M, Chen Y. Bull Environ Contam Toxicol; 2019 Aug 08; 103(2):280-285. PubMed ID: 31069404 [Abstract] [Full Text] [Related]
14. CH4 control and nitrogen removal from constructed wetlands by plant combination. Zhang X, Wang R, Wang H, Xu Z, Feng C, Zhao F. Chemosphere; 2024 May 08; 355():141898. PubMed ID: 38579951 [Abstract] [Full Text] [Related]
15. Nitrogen dynamics model for a pilot field-scale novel dewatered alum sludge cake-based constructed wetland system. Kumar JL, Zhao YQ, Hu YS, Babatunde AO, Zhao XH. Environ Technol; 2015 May 08; 36(5-8):732-41. PubMed ID: 25179044 [Abstract] [Full Text] [Related]
16. Carbon slow-release and enhanced nitrogen removal performance of plant residue-based composite filler and ecological mechanisms in constructed wetland application. Li Z, Huang T, Wu W, Xu X, Wu B, Zhuang J, Yang J, Shi H, Zhang Y, Wang B. Bioresour Technol; 2024 Jun 08; 402():130795. PubMed ID: 38705213 [Abstract] [Full Text] [Related]
17. A comparison of the mechanisms and performances of Acorus calamus, Pontederia cordata and Alisma plantagoaquatica in removing nitrogen from farmland wastewater. He S, Li Y, Yang W, Huang J, Hou K, Zhang L, Song H, Yang L, Tian C, Rong X, Han Y. Bioresour Technol; 2021 Jul 08; 332():125105. PubMed ID: 33857861 [Abstract] [Full Text] [Related]
18. Remediation of industrial wastewater using four hydrophyte species: A comparison of individual (pot experiments) and mix plants (constructed wetland). Ayaz T, Khan S, Khan AZ, Lei M, Alam M. J Environ Manage; 2020 Feb 01; 255():109833. PubMed ID: 31747629 [Abstract] [Full Text] [Related]