These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Silver nanoparticles, nanoneedles and nanorings: impact of electromagnetic near-field on surface-enhanced Raman scattering. Hossain MK, Drmosh QA, Arifuzzaman M. Phys Chem Chem Phys; 2022 Apr 13; 24(15):8787-8799. PubMed ID: 35352733 [Abstract] [Full Text] [Related]
3. Clusters-based silver nanorings: An active substrate for surface-enhanced Raman scattering. Hossain MK, Drmosh QA. Spectrochim Acta A Mol Biomol Spectrosc; 2021 Dec 15; 263():120141. PubMed ID: 34280795 [Abstract] [Full Text] [Related]
4. Silver-Decorated Silicon Nanostructures: Fabrication and Characterization of Nanoscale Terraces as an Efficient SERS-Active Substrate. Hossain MK. Int J Mol Sci; 2022 Dec 21; 24(1):. PubMed ID: 36613545 [Abstract] [Full Text] [Related]
5. Silver overlayer-modified surface-enhanced Raman scattering-active gold substrates for potential applications in trace detection of biochemical species. Ou KL, Hsu TC, Liu YC, Yang KH, Tsai HY. Anal Chim Acta; 2014 Jan 02; 806():188-96. PubMed ID: 24331055 [Abstract] [Full Text] [Related]
6. In situ fabrication of 3D Ag@ZnO nanostructures for microfluidic surface-enhanced Raman scattering systems. Xie Y, Yang S, Mao Z, Li P, Zhao C, Cohick Z, Huang PH, Huang TJ. ACS Nano; 2014 Dec 23; 8(12):12175-84. PubMed ID: 25402207 [Abstract] [Full Text] [Related]
7. Surface-enhanced Raman scattering-active silver nanostructures with two domains. Chang CC, Yang KH, Liu YC, Yu CC. Anal Chim Acta; 2012 Jan 04; 709():91-7. PubMed ID: 22122936 [Abstract] [Full Text] [Related]
8. Differential SERS activity of gold and silver nanostructures enabled by adsorbed poly(vinylpyrrolidone). Pinkhasova P, Yang L, Zhang Y, Sukhishvili S, Du H. Langmuir; 2012 Feb 07; 28(5):2529-35. PubMed ID: 22225536 [Abstract] [Full Text] [Related]
9. Synergistic Enhancement Effect for Boosting Raman Detection Sensitivity of Antibiotics. Zhai Y, Zheng Y, Ma Z, Cai Y, Wang F, Guo X, Wen Y, Yang H. ACS Sens; 2019 Nov 22; 4(11):2958-2965. PubMed ID: 31533426 [Abstract] [Full Text] [Related]
10. Porous Silicon Covered with Silver Nanoparticles as Surface-Enhanced Raman Scattering (SERS) Substrate for Ultra-Low Concentration Detection. Kosović M, Balarin M, Ivanda M, Đerek V, Marciuš M, Ristić M, Gamulin O. Appl Spectrosc; 2015 Dec 22; 69(12):1417-24. PubMed ID: 26556231 [Abstract] [Full Text] [Related]
11. Composite substrate of graphene/Ag nanoparticles coupled with a multilayer film for surface-enhanced Raman scattering biosensing. Yue W, Liu C, Zha Z, Liu R, Gao J, Shafi M, Feng J, Jiang S. Opt Express; 2022 Apr 11; 30(8):13226-13237. PubMed ID: 35472940 [Abstract] [Full Text] [Related]
12. Surface-enhanced Raman scattering: realization of localized surface plasmon resonance using unique substrates and methods. Hossain MK, Kitahama Y, Huang GG, Han X, Ozaki Y. Anal Bioanal Chem; 2009 Aug 11; 394(7):1747-60. PubMed ID: 19384546 [Abstract] [Full Text] [Related]
13. Localized surface plasmon resonance and surface enhanced Raman scattering responses of Au@Ag core-shell nanorods with different thickness of Ag shell. Ma Y, Zhou J, Zou W, Jia Z, Petti L, Mormile P. J Nanosci Nanotechnol; 2014 Jun 11; 14(6):4245-50. PubMed ID: 24738378 [Abstract] [Full Text] [Related]
14. Surface-enhanced Raman scattering-active gold nanoparticles modified with a monolayer of silver film. Chang CC, Yang KH, Liu YC, Yu CC, Wu YH. Analyst; 2012 Nov 07; 137(21):4943-50. PubMed ID: 22970430 [Abstract] [Full Text] [Related]
15. Raman scattering of 4-aminobenzenethiol sandwiched between Ag nanoparticle and macroscopically smooth Au substrate: effects of size of Ag nanoparticles and the excitation wavelength. Kim K, Choi JY, Lee HB, Shin KS. J Chem Phys; 2011 Sep 28; 135(12):124705. PubMed ID: 21974550 [Abstract] [Full Text] [Related]
16. 3D silver nanoparticles decorated zinc oxide/silicon heterostructured nanomace arrays as high-performance surface-enhanced Raman scattering substrates. Huang J, Chen F, Zhang Q, Zhan Y, Ma D, Xu K, Zhao Y. ACS Appl Mater Interfaces; 2015 Mar 18; 7(10):5725-35. PubMed ID: 25731067 [Abstract] [Full Text] [Related]
17. Ag shell-Au satellite hetero-nanostructure for ultra-sensitive, reproducible, and homogeneous NIR SERS activity. Chang H, Kang H, Yang JK, Jo A, Lee HY, Lee YS, Jeong DH. ACS Appl Mater Interfaces; 2014 Aug 13; 6(15):11859-63. PubMed ID: 25078544 [Abstract] [Full Text] [Related]
18. Half-raspberry-like bimetallic nanoassembly: Interstitial dependent correlated surface plasmon resonances and surface-enhanced Raman spectroscopy. Hossain MK, Kitahama Y, Ozaki Y. Phys Chem Chem Phys; 2021 Oct 27; 23(41):23875-23885. PubMed ID: 34651624 [Abstract] [Full Text] [Related]
19. Evaluation of electromagnetic enhancement of surface enhanced hyper Raman scattering using plasmonic properties of binary active sites in single Ag nanoaggregates. Itoh T, Yoshikawa H, Yoshida K, Biju V, Ishikawa M. J Chem Phys; 2009 Jun 07; 130(21):214706. PubMed ID: 19508086 [Abstract] [Full Text] [Related]
20. Surface-Enhanced Raman Scattering Active Plasmonic Nanoparticles with Ultrasmall Interior Nanogap for Multiplex Quantitative Detection and Cancer Cell Imaging. Li J, Zhu Z, Zhu B, Ma Y, Lin B, Liu R, Song Y, Lin H, Tu S, Yang C. Anal Chem; 2016 Aug 02; 88(15):7828-36. PubMed ID: 27385563 [Abstract] [Full Text] [Related] Page: [Next] [New Search]