These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
244 related items for PubMed ID: 34014347
1. Significantly improving the thermostability of a hyperthermophilic GH10 family xylanase XynAF1 by semi-rational design. Li G, Zhou X, Li Z, Liu Y, Liu D, Miao Y, Wan Q, Zhang R. Appl Microbiol Biotechnol; 2021 Jun; 105(11):4561-4576. PubMed ID: 34014347 [Abstract] [Full Text] [Related]
2. Improvement of GH10 family xylanase thermostability by introducing of an extra α-helix at the C-terminal. Li G, Chen X, Zhou X, Huang R, Li L, Miao Y, Liu D, Zhang R. Biochem Biophys Res Commun; 2019 Jul 30; 515(3):417-422. PubMed ID: 31160089 [Abstract] [Full Text] [Related]
3. Investigating the effect of substrate binding on the catalytic activity of xylanase. Ma L, Li G, Liu Y, Li Z, Miao Y, Wan Q, Liu D, Zhang R. Appl Microbiol Biotechnol; 2023 Nov 30; 107(22):6873-6886. PubMed ID: 37715802 [Abstract] [Full Text] [Related]
4. Characterization and structural analysis of a thermophilic GH11 xylanase from compost metatranscriptome. Yi Y, Xu S, Kovalevsky A, Zhang X, Liu D, Wan Q. Appl Microbiol Biotechnol; 2021 Oct 30; 105(20):7757-7767. PubMed ID: 34553251 [Abstract] [Full Text] [Related]
5. Computational approach for identification, characterization, three-dimensional structure modelling and machine learning-based thermostability prediction of xylanases from the genome of Aspergillus fumigatus. Dodda SR, Hossain M, Kapoor BS, Dasgupta S, B VPR, Aikat K, Mukhopadhyay SS. Comput Biol Chem; 2021 Apr 30; 91():107451. PubMed ID: 33601238 [Abstract] [Full Text] [Related]
6. Clustered surface amino acid residues modulate the acid stability of GH10 xylanase in fungi. Xia Y, Wang W, Wei Y, Guo C, Song S, Cai S, Miao Y. Appl Microbiol Biotechnol; 2024 Feb 16; 108(1):216. PubMed ID: 38363378 [Abstract] [Full Text] [Related]
7. Structure features of GH10 xylanase from Caldicellulosiruptor bescii: implication for its thermophilic adaption and substrate binding preference. Zhang Y, An J, Yang G, Zhang X, Xie Y, Chen L, Feng Y. Acta Biochim Biophys Sin (Shanghai); 2016 Oct 16; 48(10):948-957. PubMed ID: 27563004 [Abstract] [Full Text] [Related]
8. N- and C-terminal truncations of a GH10 xylanase significantly increase its activity and thermostability but decrease its SDS resistance. Zheng F, Huang J, Liu X, Hu H, Long L, Chen K, Ding S. Appl Microbiol Biotechnol; 2016 Apr 16; 100(8):3555-65. PubMed ID: 26621803 [Abstract] [Full Text] [Related]
9. Site-directed mutagenesis of GH10 xylanase A from Penicillium canescens for determining factors affecting the enzyme thermostability. Denisenko YA, Gusakov AV, Rozhkova AM, Osipov DO, Zorov IN, Matys VY, Uporov IV, Sinitsyn AP. Int J Biol Macromol; 2017 Nov 16; 104(Pt A):665-671. PubMed ID: 28634062 [Abstract] [Full Text] [Related]
10. Enhancement of thermostability of GH10 xylanase E Penicillium canescens directed by ΔΔG calculations and structure analysis. Dotsenko AS, Denisenko YA, Rozhkova AM, Zorov IN, Korotkova OG, Sinitsyn AP. Enzyme Microb Technol; 2021 Dec 16; 152():109938. PubMed ID: 34753033 [Abstract] [Full Text] [Related]
11. Process desired functional attributes of an endoxylanase of GH10 family from a new strain of Aspergillus terreus S9. Sharma S, Sharma V, Nargotra P, Bajaj BK. Int J Biol Macromol; 2018 Aug 16; 115():663-671. PubMed ID: 29684454 [Abstract] [Full Text] [Related]
12. Site-directed mutagenesis and thermostability of xylanase XYNB from Aspergillus niger 400264. Xie J, Song L, Li X, Yi X, Xu H, Li J, Qiao D, Cao Y. Curr Microbiol; 2011 Jan 16; 62(1):242-8. PubMed ID: 20593181 [Abstract] [Full Text] [Related]
13. Characterization of recombinant endo-1,4-β-xylanase of Bacillus halodurans C-125 and rational identification of hot spot amino acid residues responsible for enhancing thermostability by an in-silico approach. Mahmood MS, Rasul F, Saleem M, Afroz A, Malik MF, Ashraf NM, Rashid U, Naz S, Zeeshan N. Mol Biol Rep; 2019 Aug 16; 46(4):3651-3662. PubMed ID: 31079316 [Abstract] [Full Text] [Related]
14. Construction of Thermophilic Xylanase and Its Structural Analysis. Watanabe M, Fukada H, Ishikawa K. Biochemistry; 2016 Aug 09; 55(31):4399-409. PubMed ID: 27410423 [Abstract] [Full Text] [Related]
15. Structural perspectives of an engineered β-1,4-xylanase with enhanced thermostability. Chen CC, Luo H, Han X, Lv P, Ko TP, Peng W, Huang CH, Wang K, Gao J, Zheng Y, Yang Y, Zhang J, Yao B, Guo RT. J Biotechnol; 2014 Nov 10; 189():175-82. PubMed ID: 25193708 [Abstract] [Full Text] [Related]
16. Structural Insights into the Thermophilic Adaption Mechanism of Endo-1,4-β-Xylanase from Caldicellulosiruptor owensensis. Liu X, Liu T, Zhang Y, Xin F, Mi S, Wen B, Gu T, Shi X, Wang F, Sun L. J Agric Food Chem; 2018 Jan 10; 66(1):187-193. PubMed ID: 29236500 [Abstract] [Full Text] [Related]