These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


109 related items for PubMed ID: 34029194

  • 1. A New Family of Similarity Measures for Scoring Confidence of Protein Interactions Using Gene Ontology.
    Paul M, Anand A.
    IEEE/ACM Trans Comput Biol Bioinform; 2022; 19(1):19-30. PubMed ID: 34029194
    [Abstract] [Full Text] [Related]

  • 2. Impact of low-confidence interactions on computational identification of protein complexes.
    Paul M, Anand A.
    J Bioinform Comput Biol; 2020 Aug; 18(4):2050025. PubMed ID: 32757809
    [Abstract] [Full Text] [Related]

  • 3. An improved method for scoring protein-protein interactions using semantic similarity within the gene ontology.
    Jain S, Bader GD.
    BMC Bioinformatics; 2010 Nov 15; 11():562. PubMed ID: 21078182
    [Abstract] [Full Text] [Related]

  • 4. Improving the measurement of semantic similarity between gene ontology terms and gene products: insights from an edge- and IC-based hybrid method.
    Wu X, Pang E, Lin K, Pei ZM.
    PLoS One; 2013 Nov 15; 8(5):e66745. PubMed ID: 23741529
    [Abstract] [Full Text] [Related]

  • 5. TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
    Ieremie I, Ewing RM, Niranjan M.
    Bioinformatics; 2022 Apr 12; 38(8):2269-2277. PubMed ID: 35176146
    [Abstract] [Full Text] [Related]

  • 6. GO functional similarity clustering depends on similarity measure, clustering method, and annotation completeness.
    Liu M, Thomas PD.
    BMC Bioinformatics; 2019 Mar 27; 20(1):155. PubMed ID: 30917779
    [Abstract] [Full Text] [Related]

  • 7. Multi-Factored Gene-Gene Proximity Measures Exploiting Biological Knowledge Extracted from Gene Ontology: Application in Gene Clustering.
    Acharya S, Saha S, Pradhan P.
    IEEE/ACM Trans Comput Biol Bioinform; 2020 Mar 27; 17(1):207-219. PubMed ID: 29994130
    [Abstract] [Full Text] [Related]

  • 8. IAS: Interaction Specific GO Term Associations for Predicting Protein-Protein Interaction Networks.
    Yerneni S, Khan IK, Wei Q, Kihara D.
    IEEE/ACM Trans Comput Biol Bioinform; 2018 Mar 27; 15(4):1247-1258. PubMed ID: 26415209
    [Abstract] [Full Text] [Related]

  • 9. simDEF: definition-based semantic similarity measure of gene ontology terms for functional similarity analysis of genes.
    Pesaranghader A, Matwin S, Sokolova M, Beiko RG.
    Bioinformatics; 2016 May 01; 32(9):1380-7. PubMed ID: 26708333
    [Abstract] [Full Text] [Related]

  • 10. The relative vertex clustering value--a new criterion for the fast discovery of functional modules in protein interaction networks.
    Ibrahim ZM, Ngom A.
    BMC Bioinformatics; 2015 May 01; 16 Suppl 4(Suppl 4):S3. PubMed ID: 25734691
    [Abstract] [Full Text] [Related]

  • 11. Annotating activation/inhibition relationships to protein-protein interactions using gene ontology relations.
    Yim S, Yu H, Jang D, Lee D.
    BMC Syst Biol; 2018 Apr 11; 12(Suppl 1):9. PubMed ID: 29671402
    [Abstract] [Full Text] [Related]

  • 12. Exploring the relationship between hub proteins and drug targets based on GO and intrinsic disorder.
    Fu Y, Guo Y, Wang Y, Luo J, Pu X, Li M, Zhang Z.
    Comput Biol Chem; 2015 Jun 11; 56():41-8. PubMed ID: 25854804
    [Abstract] [Full Text] [Related]

  • 13. A New Path Based Hybrid Measure for Gene Ontology Similarity.
    Bandyopadhyay S, Mallick K.
    IEEE/ACM Trans Comput Biol Bioinform; 2014 Jun 11; 11(1):116-27. PubMed ID: 26355512
    [Abstract] [Full Text] [Related]

  • 14. Novel symmetry-based gene-gene dissimilarity measures utilizing Gene Ontology: Application in gene clustering.
    Acharya S, Saha S, Pradhan P.
    Gene; 2018 Dec 30; 679():341-351. PubMed ID: 30184472
    [Abstract] [Full Text] [Related]

  • 15. Influence of the go-based semantic similarity measures in multi-objective gene clustering algorithm performance.
    Parraga-Alava J, Inostroza-Ponta M.
    J Bioinform Comput Biol; 2020 Dec 30; 18(6):2050038. PubMed ID: 33148094
    [Abstract] [Full Text] [Related]

  • 16. An improved method for functional similarity analysis of genes based on Gene Ontology.
    Tian Z, Wang C, Guo M, Liu X, Teng Z.
    BMC Syst Biol; 2016 Dec 23; 10(Suppl 4):119. PubMed ID: 28155727
    [Abstract] [Full Text] [Related]

  • 17. Correlating information contents of gene ontology terms to infer semantic similarity of gene products.
    Gan M.
    Comput Math Methods Med; 2014 Dec 23; 2014():891842. PubMed ID: 24963342
    [Abstract] [Full Text] [Related]

  • 18. Determining protein-protein functional associations by functional rules based on gene ontology and KEGG pathway.
    Zhang YH, Zeng T, Chen L, Huang T, Cai YD.
    Biochim Biophys Acta Proteins Proteom; 2021 Jun 23; 1869(6):140621. PubMed ID: 33561576
    [Abstract] [Full Text] [Related]

  • 19. Joint clustering of protein interaction networks through Markov random walk.
    Wang Y, Qian X.
    BMC Syst Biol; 2014 Jun 23; 8 Suppl 1(Suppl 1):S9. PubMed ID: 24565376
    [Abstract] [Full Text] [Related]

  • 20. Globally predicting protein functions based on co-expressed protein-protein interaction networks and ontology taxonomy similarities.
    Zhu M, Gao L, Guo Z, Li Y, Wang D, Wang J, Wang C.
    Gene; 2007 Apr 15; 391(1-2):113-9. PubMed ID: 17289301
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 6.