These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


136 related items for PubMed ID: 34030114

  • 1. Cantilever-centric mechanism of cooperative non-active site mutations in HIV protease: Implications for flap dynamics.
    Sherry D, Worth R, Ismail ZS, Sayed Y.
    J Mol Graph Model; 2021 Jul; 106():107931. PubMed ID: 34030114
    [Abstract] [Full Text] [Related]

  • 2. Molecular dynamics and ligand docking of a hinge region variant of South African HIV-1 subtype C protease.
    Zondagh J, Balakrishnan V, Achilonu I, Dirr HW, Sayed Y.
    J Mol Graph Model; 2018 Jun; 82():1-11. PubMed ID: 29625416
    [Abstract] [Full Text] [Related]

  • 3. Contrasting the effect of hinge region insertions and non-active site mutations on HIV protease-inhibitor interactions: Insights from altered flap dynamics.
    Mokhantso T, Sherry D, Worth R, Pandian R, Achilonu I, Sayed Y.
    J Mol Graph Model; 2024 Dec; 133():108850. PubMed ID: 39226791
    [Abstract] [Full Text] [Related]

  • 4. Structural studies on molecular mechanisms of Nelfinavir resistance caused by non-active site mutation V77I in HIV-1 protease.
    Gupta A, Jamal S, Goyal S, Jain R, Wahi D, Grover A.
    BMC Bioinformatics; 2015 Dec; 16 Suppl 19(Suppl 19):S10. PubMed ID: 26695135
    [Abstract] [Full Text] [Related]

  • 5. Exploring the drug resistance mechanism of active site, non-active site mutations and their cooperative effects in CRF01_AE HIV-1 protease: molecular dynamics simulations and free energy calculations.
    C S V, Tamizhselvi R, Munusami P.
    J Biomol Struct Dyn; 2019 Jul; 37(10):2608-2626. PubMed ID: 30051758
    [Abstract] [Full Text] [Related]

  • 6. Structural Studies of a Rationally Selected Multi-Drug Resistant HIV-1 Protease Reveal Synergistic Effect of Distal Mutations on Flap Dynamics.
    Agniswamy J, Louis JM, Roche J, Harrison RW, Weber IT.
    PLoS One; 2016 Jul; 11(12):e0168616. PubMed ID: 27992544
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. A molecular dynamics study comparing a wild-type with a multiple drug resistant HIV protease: differences in flap and aspartate 25 cavity dimensions.
    Seibold SA, Cukier RI.
    Proteins; 2007 Nov 15; 69(3):551-65. PubMed ID: 17623840
    [Abstract] [Full Text] [Related]

  • 11. The impact of active site mutations of South African HIV PR on drug resistance: Insight from molecular dynamics simulations, binding free energy and per-residue footprints.
    Ahmed SM, Maguire GE, Kruger HG, Govender T.
    Chem Biol Drug Des; 2014 Apr 15; 83(4):472-81. PubMed ID: 24267738
    [Abstract] [Full Text] [Related]

  • 12. Multiple Molecular Dynamics Simulations and Free-Energy Predictions Uncover the Susceptibility of Variants of HIV-1 Protease against Inhibitors Darunavir and KNI-1657.
    Wang R, Zheng Q.
    Langmuir; 2021 Dec 14; 37(49):14407-14418. PubMed ID: 34851643
    [Abstract] [Full Text] [Related]

  • 13. Drug Resistance Mechanism of M46I-Mutation-Induced Saquinavir Resistance in HIV-1 Protease Using Molecular Dynamics Simulation and Binding Energy Calculation.
    Rana N, Singh AK, Shuaib M, Gupta S, Habiballah MM, Alkhanani MF, Haque S, Reshi MS, Kumar S.
    Viruses; 2022 Mar 28; 14(4):. PubMed ID: 35458427
    [Abstract] [Full Text] [Related]

  • 14. Structural and binding insights into HIV-1 protease and P2-ligand interactions through molecular dynamics simulations, binding free energy and principal component analysis.
    Karnati KR, Wang Y.
    J Mol Graph Model; 2019 Nov 28; 92():112-122. PubMed ID: 31351319
    [Abstract] [Full Text] [Related]

  • 15. Natural Polymorphisms D60E and I62V Stabilize a Closed Conformation in HIV-1 Protease in the Absence of an Inhibitor or Substrate.
    Tran TT, Fanucci GE.
    Viruses; 2024 Feb 02; 16(2):. PubMed ID: 38400012
    [Abstract] [Full Text] [Related]

  • 16. Exploring the flap dynamics of the South African HIV subtype C protease in presence of FDA-approved inhibitors: MD study.
    Maphumulo SI, Halder AK, Govender T, Maseko S, Maguire GEM, Honarparvar B, Kruger HG.
    Chem Biol Drug Des; 2018 Nov 02; 92(5):1899-1913. PubMed ID: 30003668
    [Abstract] [Full Text] [Related]

  • 17. HIV-1 protease with 20 mutations exhibits extreme resistance to clinical inhibitors through coordinated structural rearrangements.
    Agniswamy J, Shen CH, Aniana A, Sayer JM, Louis JM, Weber IT.
    Biochemistry; 2012 Apr 03; 51(13):2819-28. PubMed ID: 22404139
    [Abstract] [Full Text] [Related]

  • 18. Structural insights into the South African HIV-1 subtype C protease: impact of hinge region dynamics and flap flexibility in drug resistance.
    Naicker P, Achilonu I, Fanucchi S, Fernandes M, Ibrahim MA, Dirr HW, Soliman ME, Sayed Y.
    J Biomol Struct Dyn; 2013 Dec 03; 31(12):1370-80. PubMed ID: 23140382
    [Abstract] [Full Text] [Related]

  • 19. Systematic molecular dynamics, MM-PBSA, and ab initio approaches to the saquinavir resistance mechanism in HIV-1 PR due to 11 double and multiple mutations.
    Tzoupis H, Leonis G, Avramopoulos A, Mavromoustakos T, Papadopoulos MG.
    J Phys Chem B; 2014 Aug 14; 118(32):9538-52. PubMed ID: 25036111
    [Abstract] [Full Text] [Related]

  • 20. Binding of single walled carbon nanotube to WT and mutant HIV-1 proteases: analysis of flap dynamics and binding mechanism.
    Meher BR, Wang Y.
    J Mol Graph Model; 2012 Sep 14; 38():430-45. PubMed ID: 23142620
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 7.