These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
6. Identification of six CPC-like genes and their differential expression in leaves of tea plant, Camellia sinensis. Wakamatsu J, Wada T, Tanaka W, Fujii S, Fujikawa Y, Sambongi Y, Tominaga R. J Plant Physiol; 2021 Aug; 263():153465. PubMed ID: 34225176 [Abstract] [Full Text] [Related]
7. Genome-Wide Identification of Direct Targets of the TTG1-bHLH-MYB Complex in Regulating Trichome Formation and Flavonoid Accumulation in Arabidopsis Thaliana. Wei Z, Cheng Y, Zhou C, Li D, Gao X, Zhang S, Chen M. Int J Mol Sci; 2019 Oct 10; 20(20):. PubMed ID: 31658678 [Abstract] [Full Text] [Related]
13. Updates on molecular mechanisms in the development of branched trichome in Arabidopsis and nonbranched in cotton. Wang Z, Yang Z, Li F. Plant Biotechnol J; 2019 Sep 10; 17(9):1706-1722. PubMed ID: 31111642 [Abstract] [Full Text] [Related]
16. A WD40 Repeat Protein from Camellia sinensis Regulates Anthocyanin and Proanthocyanidin Accumulation through the Formation of MYB⁻bHLH⁻WD40 Ternary Complexes. Liu Y, Hou H, Jiang X, Wang P, Dai X, Chen W, Gao L, Xia T. Int J Mol Sci; 2018 Jun 06; 19(6):. PubMed ID: 29882778 [Abstract] [Full Text] [Related]
18. Genome-wide identification of GLABRA3 downstream genes for anthocyanin biosynthesis and trichome formation in Arabidopsis. Gao C, Li D, Jin C, Duan S, Qi S, Liu K, Wang H, Ma H, Hai J, Chen M. Biochem Biophys Res Commun; 2017 Apr 01; 485(2):360-365. PubMed ID: 28216162 [Abstract] [Full Text] [Related]
19. A systems approach reveals regulatory circuitry for Arabidopsis trichome initiation by the GL3 and GL1 selectors. Morohashi K, Grotewold E. PLoS Genet; 2009 Feb 01; 5(2):e1000396. PubMed ID: 19247443 [Abstract] [Full Text] [Related]