These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 34038406

  • 1. EfgA is a conserved formaldehyde sensor that leads to bacterial growth arrest in response to elevated formaldehyde.
    Bazurto JV, Nayak DD, Ticak T, Davlieva M, Lee JA, Hellenbrand CN, Lambert LB, Benski OJ, Quates CJ, Johnson JL, Patel JS, Ytreberg FM, Shamoo Y, Marx CJ.
    PLoS Biol; 2021 May; 19(5):e3001208. PubMed ID: 34038406
    [Abstract] [Full Text] [Related]

  • 2.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. Glycine betaine metabolism is enabled in Methylorubrum extorquens PA1 by alterations to dimethylglycine dehydrogenase.
    Hying ZT, Miller TJ, Loh CY, Bazurto JV.
    Appl Environ Microbiol; 2024 Jul 24; 90(7):e0209023. PubMed ID: 38534142
    [Abstract] [Full Text] [Related]

  • 5. Formaldehyde-detoxifying role of the tetrahydromethanopterin-linked pathway in Methylobacterium extorquens AM1.
    Marx CJ, Chistoserdova L, Lidstrom ME.
    J Bacteriol; 2003 Dec 24; 185(24):7160-8. PubMed ID: 14645276
    [Abstract] [Full Text] [Related]

  • 6. Formate as the main branch point for methylotrophic metabolism in Methylobacterium extorquens AM1.
    Crowther GJ, Kosály G, Lidstrom ME.
    J Bacteriol; 2008 Jul 24; 190(14):5057-62. PubMed ID: 18502865
    [Abstract] [Full Text] [Related]

  • 7. Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.
    Vorholt JA, Marx CJ, Lidstrom ME, Thauer RK.
    J Bacteriol; 2000 Dec 24; 182(23):6645-50. PubMed ID: 11073907
    [Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 10. Adaptation and acclimatization to formaldehyde in methylotrophs capable of high-concentration formaldehyde detoxification.
    Chongcharoen R, Smith TJ, Flint KP, Dalton H.
    Microbiology (Reading); 2005 Aug 24; 151(Pt 8):2615-2622. PubMed ID: 16079340
    [Abstract] [Full Text] [Related]

  • 11. Methylamine utilization via the N-methylglutamate pathway in Methylobacterium extorquens PA1 involves a novel flow of carbon through C1 assimilation and dissimilation pathways.
    Nayak DD, Marx CJ.
    J Bacteriol; 2014 Dec 24; 196(23):4130-9. PubMed ID: 25225269
    [Abstract] [Full Text] [Related]

  • 12. Methenyl-Dephosphotetrahydromethanopterin Is a Regulatory Signal for Acclimation to Changes in Substrate Availability in Methylobacterium extorquens AM1.
    Martinez-Gomez NC, Good NM, Lidstrom ME.
    J Bacteriol; 2015 Jun 15; 197(12):2020-6. PubMed ID: 25845846
    [Abstract] [Full Text] [Related]

  • 13. Phosphoribosylpyrophosphate synthetase as a metabolic valve advances Methylobacterium/Methylorubrum phyllosphere colonization and plant growth.
    Zhang C, Zhou DF, Wang MY, Song YZ, Zhang C, Zhang MM, Sun J, Yao L, Mo XH, Ma ZX, Yuan XJ, Shao Y, Wang HR, Dong SH, Bao K, Lu SH, Sadilek M, Kalyuzhnaya MG, Xing XH, Yang S.
    Nat Commun; 2024 Jul 16; 15(1):5969. PubMed ID: 39013920
    [Abstract] [Full Text] [Related]

  • 14. Microbial phenotypic heterogeneity in response to a metabolic toxin: Continuous, dynamically shifting distribution of formaldehyde tolerance in Methylobacterium extorquens populations.
    Lee JA, Riazi S, Nemati S, Bazurto JV, Vasdekis AE, Ridenhour BJ, Remien CH, Marx CJ.
    PLoS Genet; 2019 Nov 16; 15(11):e1008458. PubMed ID: 31710603
    [Abstract] [Full Text] [Related]

  • 15. Methylobacterium extorquens: methylotrophy and biotechnological applications.
    Ochsner AM, Sonntag F, Buchhaupt M, Schrader J, Vorholt JA.
    Appl Microbiol Biotechnol; 2015 Jan 16; 99(2):517-34. PubMed ID: 25432674
    [Abstract] [Full Text] [Related]

  • 16. Enhanced catabolism of glycine betaine and derivatives provides improved osmotic stress protection in Methylorubrum extorquens PA1.
    Bruger EL, Hying ZT, Singla D, Márquez Reyes NL, Pandey SK, Patel JS, Bazurto JV.
    Appl Environ Microbiol; 2024 Jul 24; 90(7):e0031024. PubMed ID: 38934615
    [Abstract] [Full Text] [Related]

  • 17. Functional genomics of dichloromethane utilization in Methylobacterium extorquens DM4.
    Muller EE, Hourcade E, Louhichi-Jelail Y, Hammann P, Vuilleumier S, Bringel F.
    Environ Microbiol; 2011 Sep 24; 13(9):2518-35. PubMed ID: 21854516
    [Abstract] [Full Text] [Related]

  • 18. Towards kinetic modeling of global metabolic networks: Methylobacterium extorquens AM1 growth as validation.
    Ao P, Lee LW, Lidstrom ME, Yin L, Zhu X.
    Sheng Wu Gong Cheng Xue Bao; 2008 Jun 24; 24(6):980-94. PubMed ID: 18807980
    [Abstract] [Full Text] [Related]

  • 19. A systems biology approach uncovers cellular strategies used by Methylobacterium extorquens AM1 during the switch from multi- to single-carbon growth.
    Skovran E, Crowther GJ, Guo X, Yang S, Lidstrom ME.
    PLoS One; 2010 Nov 24; 5(11):e14091. PubMed ID: 21124828
    [Abstract] [Full Text] [Related]

  • 20. Compartment-related aspects of XoxF protein functionality in Methylorubrum extorquens DM4 analysed using its cytoplasmic targeting.
    Firsova YE, Mustakhimov II, Torgonskaya ML.
    Antonie Van Leeuwenhoek; 2023 May 24; 116(5):393-413. PubMed ID: 36719530
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.