These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


228 related items for PubMed ID: 34038999

  • 1. Exonuclease III-Driven Dual-Amplified Electrochemical Aptasensor Based on PDDA-Gr/PtPd@Ni-Co Hollow Nanoboxes for Chloramphenicol Detection.
    Wang S, He B, Liang Y, Jin H, Wei M, Ren W, Suo Z, Wang J.
    ACS Appl Mater Interfaces; 2021 Jun 09; 13(22):26362-26372. PubMed ID: 34038999
    [Abstract] [Full Text] [Related]

  • 2. Triple-Helix Molecular Switch Triggered Cleavage Effect of DNAzyme for Ultrasensitive Electrochemical Detection of Chloramphenicol.
    Wang S, He B, Ren W, Suo Z, Xu Y, Wei M, Jin H.
    ACS Appl Mater Interfaces; 2022 Jun 01; 14(21):24681-24689. PubMed ID: 35579490
    [Abstract] [Full Text] [Related]

  • 3.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 4. A sensitive electrochemical aptasensor for multiplex antibiotics detection based on high-capacity magnetic hollow porous nanotracers coupling exonuclease-assisted cascade target recycling.
    Yan Z, Gan N, Li T, Cao Y, Chen Y.
    Biosens Bioelectron; 2016 Apr 15; 78():51-57. PubMed ID: 26594886
    [Abstract] [Full Text] [Related]

  • 5. A novel electrochemical aptasensor based on AgPdNPs/PEI-GO and hollow nanobox-like Pt@Ni-CoHNBs for procymidone detection.
    Wang R, He B, Wang Y, Liu Y, Liang Z, Jin H, Wei M, Ren W, Suo Z, Xu Y.
    Bioelectrochemistry; 2024 Aug 15; 158():108728. PubMed ID: 38733721
    [Abstract] [Full Text] [Related]

  • 6. Electrochemical aptasensor for multi-antibiotics detection based on endonuclease and exonuclease assisted dual recycling amplification strategy.
    Huang S, Gan N, Li T, Zhou Y, Cao Y, Dong Y.
    Talanta; 2018 Mar 01; 179():28-36. PubMed ID: 29310232
    [Abstract] [Full Text] [Related]

  • 7.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 8.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 9. Aptasensor for electrochemical sensing of angiogenin based on electrode modified by cationic polyelectrolyte-functionalized graphene/gold nanoparticles composites.
    Chen Z, Zhang C, Li X, Ma H, Wan C, Li K, Lin Y.
    Biosens Bioelectron; 2015 Mar 15; 65():232-7. PubMed ID: 25461163
    [Abstract] [Full Text] [Related]

  • 10.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 11. A graphene-oxide-based aptasensor for fluorometric determination of chloramphenicol in milk and honey samples utilizing exonuclease III-assisted target recycling and Nb.BbvCI-powered DNA walker cascade amplification.
    Ning Y, Wang X, Liu S, Li L, Lu F.
    Ecotoxicol Environ Saf; 2023 Jan 01; 249():114449. PubMed ID: 38321668
    [Abstract] [Full Text] [Related]

  • 12. Electrochemical Aptasensor Based on Au Nanoparticles Decorated Porous Carbon Derived from Metal-Organic Frameworks for Ultrasensitive Detection of Chloramphenicol.
    Yang J, Zou J, Zhong W, Zou J, Gao Y, Liu S, Zhang S, Lu L.
    Molecules; 2022 Oct 12; 27(20):. PubMed ID: 36296434
    [Abstract] [Full Text] [Related]

  • 13. Ultrasensitive label-free electrochemical aptasensor for Pb2+ detection exploiting Exo III amplification and AgPt/GO nanocomposite-enhanced transduction.
    Li M, Liu H, He B, Xie L, Cao X, Jin H, Wei M, Ren W, Suo Z, Xu Y.
    Talanta; 2024 Aug 15; 276():126260. PubMed ID: 38759364
    [Abstract] [Full Text] [Related]

  • 14. A triple-amplification SPR electrochemiluminescence assay for chloramphenicol based on polymer enzyme-linked nanotracers and exonuclease-assisted target recycling.
    Miao YB, Ren HX, Gan N, Zhou Y, Cao Y, Li T, Chen Y.
    Biosens Bioelectron; 2016 Dec 15; 86():477-483. PubMed ID: 27434234
    [Abstract] [Full Text] [Related]

  • 15. Ultrasensitive electrochemical detection of ochratoxin A based on signal amplification by one-pot synthesized flower-like PEDOT-AuNFs supported on a graphene oxide sponge.
    Wang P, Wang L, Ding M, Pei M, Guo W.
    Analyst; 2019 Oct 07; 144(19):5866-5874. PubMed ID: 31482879
    [Abstract] [Full Text] [Related]

  • 16. A sensitive electrochemical aptasensor for ATP detection based on exonuclease III-assisted signal amplification strategy.
    Bao T, Shu H, Wen W, Zhang X, Wang S.
    Anal Chim Acta; 2015 Mar 03; 862():64-9. PubMed ID: 25682429
    [Abstract] [Full Text] [Related]

  • 17. An electrochemical aptasensor for detection of IFN-γ using graphene and a dual signal amplification strategy based on the exonuclease-mediated surface-initiated enzymatic polymerization.
    Liu C, Xiang G, Jiang D, Liu L, Liu F, Luo F, Pu X.
    Analyst; 2015 Nov 21; 140(22):7784-91. PubMed ID: 26460269
    [Abstract] [Full Text] [Related]

  • 18. An electrochemical aptasensor for thrombin detection based on the recycling of exonuclease III and double-stranded DNA-templated copper nanoparticles assisted signal amplification.
    Zhao J, Xin M, Cao Y, Yin Y, Shu Y, Ma W.
    Anal Chim Acta; 2015 Feb 20; 860():23-8. PubMed ID: 25682243
    [Abstract] [Full Text] [Related]

  • 19. The development of an electrochemical nanoaptasensor to sensing chloramphenicol using a nanocomposite consisting of graphene oxide functionalized with (3-Aminopropyl) triethoxysilane and silver nanoparticles.
    Roushani M, Rahmati Z, Farokhi S, Hoseini SJ, Fath RH.
    Mater Sci Eng C Mater Biol Appl; 2020 Mar 20; 108():110388. PubMed ID: 31923985
    [Abstract] [Full Text] [Related]

  • 20. Lysozyme aptasensor based on a glassy carbon electrode modified with a nanocomposite consisting of multi-walled carbon nanotubes, poly(diallyl dimethyl ammonium chloride) and carbon quantum dots.
    Rezaei B, Jamei HR, Ensafi AA.
    Mikrochim Acta; 2018 Feb 14; 185(3):180. PubMed ID: 29594452
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 12.