These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


189 related items for PubMed ID: 34047977

  • 21. Mass Spectrometric Analysis of Bioactive Sphingolipids in Fungi.
    Singh A, Del Poeta M.
    Methods Mol Biol; 2021; 2306():239-255. PubMed ID: 33954951
    [Abstract] [Full Text] [Related]

  • 22.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24. Detection and quantification of plant sphingolipids by LC-MS.
    Markham JE.
    Methods Mol Biol; 2013; 1009():93-101. PubMed ID: 23681527
    [Abstract] [Full Text] [Related]

  • 25. Liquid chromatography with dual parallel mass spectrometry and 31P nuclear magnetic resonance spectroscopy for analysis of sphingomyelin and dihydrosphingomyelin. II. Bovine milk sphingolipids.
    Byrdwell WC, Perry RH.
    J Chromatogr A; 2007 Apr 06; 1146(2):164-85. PubMed ID: 17303148
    [Abstract] [Full Text] [Related]

  • 26. Normal phase liquid chromatography coupled to quadrupole time of flight atmospheric pressure chemical ionization mass spectrometry for separation, detection and mass spectrometric profiling of neutral sphingolipids and cholesterol.
    Farwanah H, Wirtz J, Kolter T, Raith K, Neubert RH, Sandhoff K.
    J Chromatogr B Analyt Technol Biomed Life Sci; 2009 Oct 01; 877(27):2976-82. PubMed ID: 19646933
    [Abstract] [Full Text] [Related]

  • 27.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 28.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 29. Biochemical survey of the polar head of plant glycosylinositolphosphoceramides unravels broad diversity.
    Cacas JL, Buré C, Furt F, Maalouf JP, Badoc A, Cluzet S, Schmitter JM, Antajan E, Mongrand S.
    Phytochemistry; 2013 Dec 01; 96():191-200. PubMed ID: 23993446
    [Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Discovery of novel neutral glycosphingolipids in cereal crops: rapid profiling using reversed-phased HPLC-ESI-QqTOF with parallel reaction monitoring.
    Yu D, Boughton BA, Rupasinghe TWT, Hill CB, Herrfurth C, Scholz P, Feussner I, Roessner U.
    Sci Rep; 2023 Dec 19; 13(1):22560. PubMed ID: 38110595
    [Abstract] [Full Text] [Related]

  • 32. Identification and initial characterizations of free, glycosylated, and phosphorylated ceramides of Paramecium.
    Kaneshiro ES, Jayasimhulu K, Sul D, Erwin JA.
    J Lipid Res; 1997 Dec 19; 38(12):2399-410. PubMed ID: 9458264
    [Abstract] [Full Text] [Related]

  • 33.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 34. Sphingolipid profiling of human plasma and FPLC-separated lipoprotein fractions by hydrophilic interaction chromatography tandem mass spectrometry.
    Scherer M, Böttcher A, Schmitz G, Liebisch G.
    Biochim Biophys Acta; 2011 Feb 19; 1811(2):68-75. PubMed ID: 21081176
    [Abstract] [Full Text] [Related]

  • 35.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 36. Quantitation of multiple sphingolipid classes using normal and reversed-phase LC-ESI-MS/MS: comparative profiling of two cell lines.
    Masood MA, Rao RP, Acharya JK, Blonder J, Veenstra TD.
    Lipids; 2012 Feb 19; 47(2):209-26. PubMed ID: 22124806
    [Abstract] [Full Text] [Related]

  • 37.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 38. Molecular characterization and targeted quantitative profiling of the sphingolipidome in rice.
    Ishikawa T, Ito Y, Kawai-Yamada M.
    Plant J; 2016 Nov 19; 88(4):681-693. PubMed ID: 27454201
    [Abstract] [Full Text] [Related]

  • 39.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 40.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 10.