These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
204 related items for PubMed ID: 34054183
21. Role of ancillary ligands in selectivity towards acceptorless dehydrogenation versus dehydrogenative coupling of alcohols and amines catalyzed by cationic ruthenium(II)-CNC pincer complexes. Singh RK, Yadav D, Misra S, Singh AK. Dalton Trans; 2023 Nov 07; 52(43):15878-15895. PubMed ID: 37830304 [Abstract] [Full Text] [Related]
22. POP-pincer ruthenium complexes: d(6) counterparts of osmium d(4) species. Alós J, Bolaño T, Esteruelas MA, Oliván M, Oñate E, Valencia M. Inorg Chem; 2014 Jan 21; 53(2):1195-209. PubMed ID: 24405059 [Abstract] [Full Text] [Related]
23. Trans --> cis isomerization of trans-[(dppm)2Ru(H)(L)][BF4] (L = P(OR)3) complexes: preparation of cis-[(dppm)2Ru(eta2-H2)(L)][BF4]2. Mathew N, Jagirdar BR, Ranganathan A. Inorg Chem; 2003 Jan 13; 42(1):187-97. PubMed ID: 12513094 [Abstract] [Full Text] [Related]
26. Syntheses and structures of ruthenium(II) N,S-heterocyclic carbene diphosphine complexes and their catalytic activity towards transfer hydrogenation. Ding N, Hor TS. Chem Asian J; 2011 Jun 06; 6(6):1485-91. PubMed ID: 21500358 [Abstract] [Full Text] [Related]
28. Impact of Coordination Geometry, Bite Angle, and Trans Influence on Metal-Ligand Covalency in Phenyl-Substituted Phosphine Complexes of Ni and Pd. Donahue CM, McCollom SP, Forrest CM, Blake AV, Bellott BJ, Keith JM, Daly SR. Inorg Chem; 2015 Jun 15; 54(12):5646-59. PubMed ID: 25996554 [Abstract] [Full Text] [Related]
30. Pincer phosphine complexes of ruthenium: formation of Ru(P-O-P)(PPh3)HCl (P-O-P = xantphos, DPEphos, (Ph2PCH2CH2)2O) and Ru(dppf)(PPh3)HCl and characterization of cationic dioxygen, dihydrogen, dinitrogen, and arene coordinated phosphine products. Ledger AE, Moreno A, Ellul CE, Mahon MF, Pregosin PS, Whittlesey MK, Williams JM. Inorg Chem; 2010 Aug 16; 49(16):7244-56. PubMed ID: 20575584 [Abstract] [Full Text] [Related]
31. Further Insight into the Lability of MeCN Ligands of Cytotoxic Cycloruthenated Compounds: Evidence for the Antisymbiotic Effect Trans to the Carbon Atom at the Ru Center. Barbosa AS, Werlé C, Colunga CO, Rodríguez CF, Toscano RA, Le Lagadec R, Pfeffer M. Inorg Chem; 2015 Aug 03; 54(15):7617-26. PubMed ID: 26172528 [Abstract] [Full Text] [Related]
32. A succession of isomers of ruthenium dihydride complexes. Which one is the ketone hydrogenation catalyst? Abbel R, Abdur-Rashid K, Faatz M, Hadzovic A, Lough AJ, Morris RH. J Am Chem Soc; 2005 Feb 16; 127(6):1870-82. PubMed ID: 15701022 [Abstract] [Full Text] [Related]
33. trans-Fe(II)(H)2(diphosphine)(diamine) complexes as alternative catalysts for the asymmetric hydrogenation of ketones? A DFT study. Chen HY, Di Tommaso D, Hogarth G, Catlow CR. Dalton Trans; 2011 Jan 14; 40(2):402-12. PubMed ID: 21103602 [Abstract] [Full Text] [Related]
34. Preparation and reactivity of diazoalkane complexes of ruthenium stabilised by an indenyl ligand. Albertin G, Antoniutti S, Castro J, Dottorello G. Dalton Trans; 2015 May 21; 44(19):9289-303. PubMed ID: 25913868 [Abstract] [Full Text] [Related]
35. Quadratic and cubic hyperpolarizabilities of nitro-phenyl/-naphthalenyl/-anthracenyl alkynyl complexes. Du J, Kodikara MS, Moxey GJ, Morshedi M, Barlow A, Quintana C, Wang G, Stranger R, Zhang C, Cifuentes MP, Humphrey MG. Dalton Trans; 2018 Mar 26; 47(13):4560-4571. PubMed ID: 29513311 [Abstract] [Full Text] [Related]
36. Syntheses, structural determinations of [Ru(ROCS2)2(PPh3)2](+/0) pairs, and kinetic analyses of thermal reactions involving transient trans-[Ru(iPrOCS2)2(PPh3)2] species (ROCS2(-) = ethyl- or isopropyldithiocarbonate and PPh3 = triphenylphosphine). Noda K, Ohuchi Y, Hashimoto A, Fujiki M, Itoh S, Iwatsuki S, Noda T, Suzuki T, Kashiwabara K, Takagi HD. Inorg Chem; 2006 Feb 06; 45(3):1349-55. PubMed ID: 16441147 [Abstract] [Full Text] [Related]
37. Catalytic transfer hydrogenation with terdentate CNN ruthenium complexes: the influence of the base. Baratta W, Siega K, Rigo P. Chemistry; 2007 Feb 06; 13(26):7479-86. PubMed ID: 17579903 [Abstract] [Full Text] [Related]
38. Bioinspired Hydrogenase Models: The Mixed-Valence Triiron Complex [Fe3(CO)7(μ-edt)2] and Phosphine Derivatives [Fe3(CO)7-x (PPh3) x (μ-edt)2] (x = 1, 2) and [Fe3(CO)5(κ2-diphosphine)(μ-edt)2] as Proton Reduction Catalysts. Rahaman A, Ghosh S, Unwin DG, Basak-Modi S, Holt KB, Kabir SE, Nordlander E, Richmond MG, Hogarth G. Organometallics; 2014 Mar 24; 33(6):1356-1366. PubMed ID: 24748710 [Abstract] [Full Text] [Related]
39. Mechanism of the hydrogenation of ketones catalyzed by trans-dihydrido(diamine)ruthenium II complexes. Abdur-Rashid K, Clapham SE, Hadzovic A, Harvey JN, Lough AJ, Morris RH. J Am Chem Soc; 2002 Dec 18; 124(50):15104-18. PubMed ID: 12475357 [Abstract] [Full Text] [Related]
40. Cationic carboxylate and thioacetate ruthenium(ii) complexes: synthesis and cytotoxic activity against anaplastic thyroid cancer cells. Lovison D, Allegri L, Baldan F, Ballico M, Damante G, Jandl C, Baratta W. Dalton Trans; 2020 Jun 23; 49(24):8375-8388. PubMed ID: 32520028 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]