These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
139 related items for PubMed ID: 34057226
1. Natural occurrence of Azospirillum brasilense in petunia with capacity to improve plant growth and flowering. Toffoli LM, Martínez-Zamora MG, Medrano NN, Fontana CA, Lovaisa NC, Delaporte-Quintana P, Elias JM, Salazar SM, Pedraza RO. J Basic Microbiol; 2021 Jul; 61(7):662-673. PubMed ID: 34057226 [Abstract] [Full Text] [Related]
2. Elemental composition of strawberry plants inoculated with the plant growth-promoting bacterium Azospirillum brasilense REC3, assessed with scanning electron microscopy and energy dispersive X-ray analysis. Guerrero-Molina MF, Lovaisa NC, Salazar SM, Díaz-Ricci JC, Pedraza RO. Plant Biol (Stuttg); 2014 Jul; 16(4):726-31. PubMed ID: 24148195 [Abstract] [Full Text] [Related]
3. Can co-inoculation of Bradyrhizobium and Azospirillum alleviate adverse effects of drought stress on soybean (Glycine max L. Merrill.)? Silva ER, Zoz J, Oliveira CES, Zuffo AM, Steiner F, Zoz T, Vendruscolo EP. Arch Microbiol; 2019 Apr; 201(3):325-335. PubMed ID: 30617456 [Abstract] [Full Text] [Related]
4. Protection of tomato seedlings against infection by Pseudomonas syringae pv. tomato by using the plant growth-promoting bacterium Azospirillum brasilense. Bashan Y, De-Bashan LE. Appl Environ Microbiol; 2002 Jun; 68(6):2637-43. PubMed ID: 12039714 [Abstract] [Full Text] [Related]
5. Azospirillum brasilense ameliorates the response of Arabidopsis thaliana to drought mainly via enhancement of ABA levels. Cohen AC, Bottini R, Pontin M, Berli FJ, Moreno D, Boccanlandro H, Travaglia CN, Piccoli PN. Physiol Plant; 2015 Jan; 153(1):79-90. PubMed ID: 24796562 [Abstract] [Full Text] [Related]
6. Beneficial effects of inoculation of growth-promoting bacteria in strawberry. de Andrade FM, de Assis Pereira T, Souza TP, Guimarães PHS, Martins AD, Schwan RF, Pasqual M, Dória J. Microbiol Res; 2019 Jan; 223-225():120-128. PubMed ID: 31178044 [Abstract] [Full Text] [Related]
7. Physiological, structural and molecular traits activated in strawberry plants after inoculation with the plant growth-promoting bacterium Azospirillum brasilense REC3. Guerrero-Molina MF, Lovaisa NC, Salazar SM, Martínez-Zamora MG, Díaz-Ricci JC, Pedraza RO. Plant Biol (Stuttg); 2015 May; 17(3):766-73. PubMed ID: 25280241 [Abstract] [Full Text] [Related]
8. Functioning of plant-bacterial associations under osmotic stress in vitro. Evseeva NV, Tkachenko OV, Denisova AY, Burygin GL, Veselov DS, Matora LY, Shchyogolev SY. World J Microbiol Biotechnol; 2019 Nov 29; 35(12):195. PubMed ID: 31784916 [Abstract] [Full Text] [Related]
9. Colonization and nitrogenase activity of Triticum aestivum (cv. Baccross and Mahdavi) to the dual inoculation with Azospirillum brasilense and Rhizobium meliloti plus 2,4-D. Mehry A, Akbar M, Giti E. Pak J Biol Sci; 2008 Jun 15; 11(12):1541-50. PubMed ID: 18819640 [Abstract] [Full Text] [Related]
10. TARGET OF RAPAMYCIN signaling plays a role in Arabidopsis growth promotion by Azospirillum brasilense Sp245. Méndez-Gómez M, Castro-Mercado E, Peña-Uribe CA, Reyes-de la Cruz H, López-Bucio J, García-Pineda E. Plant Sci; 2020 Apr 15; 293():110416. PubMed ID: 32081264 [Abstract] [Full Text] [Related]
11. Short term effects of Glomus claroideum and Azospirillum brasilense on growth and root acid phosphatase activity of Carica papaya L. under phosphorus stress. Alarcón A, Davies FT, Egilla JN, Fox TC, Estrada-Luna AA, Ferrera-Cerrato R. Rev Latinoam Microbiol; 2002 Apr 15; 44(1):31-7. PubMed ID: 17061513 [Abstract] [Full Text] [Related]
12. Labeled Azospirillum brasilense wild type and excretion-ammonium strains in association with barley roots. Santos ARS, Etto RM, Furmam RW, Freitas DL, Santos KFDN, Souza EM, Pedrosa FO, Ayub RA, Steffens MBR, Galvão CW. Plant Physiol Biochem; 2017 Sep 15; 118():422-426. PubMed ID: 28711791 [Abstract] [Full Text] [Related]
13. Tomato genotype and Azospirillum inoculation modulate the changes in bacterial communities associated with roots and leaves. Correa OS, Romero AM, Montecchia MS, Soria MA. J Appl Microbiol; 2007 Mar 15; 102(3):781-6. PubMed ID: 17309628 [Abstract] [Full Text] [Related]
14. Application of Azospirillum on seeds and leaves, associated with Rhizobium inoculation, increases growth and yield of common bean. Filipini LD, Pilatti FK, Meyer E, Ventura BS, Lourenzi CR, Lovato PE. Arch Microbiol; 2021 Apr 15; 203(3):1033-1038. PubMed ID: 33140139 [Abstract] [Full Text] [Related]
15. Quantification of Azospirillum brasilense FP2 Bacteria in Wheat Roots by Strain-Specific Quantitative PCR. Stets MI, Alqueres SM, Souza EM, Pedrosa Fde O, Schmid M, Hartmann A, Cruz LM. Appl Environ Microbiol; 2015 Oct 15; 81(19):6700-9. PubMed ID: 26187960 [Abstract] [Full Text] [Related]
16. Thermal and salt stress effects on the survival of plant growth-promoting bacteria Azospirillum brasilense in inoculants for maize cultivation. da Cunha ET, Pedrolo AM, Arisi ACM. J Sci Food Agric; 2024 Jul 15; 104(9):5360-5367. PubMed ID: 38324183 [Abstract] [Full Text] [Related]
17. Azospirillum brasilense Az39 restricts cadmium entrance into wheat plants and mitigates cadmium stress. Vazquez A, Zawoznik M, Benavides MP, Groppa MD. Plant Sci; 2021 Nov 15; 312():111056. PubMed ID: 34620450 [Abstract] [Full Text] [Related]