These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
126 related items for PubMed ID: 34061207
1. Driftage: a multi-agent system framework for concept drift detection. Vieira DM, Fernandes C, Lucena C, Lifschitz S. Gigascience; 2021 Jun 01; 10(6):. PubMed ID: 34061207 [Abstract] [Full Text] [Related]
3. Design of adaptive ensemble classifier for online sentiment analysis and opinion mining. Kumar S, Singh R, Khan MZ, Noorwali A. PeerJ Comput Sci; 2021 Jun 01; 7():e660. PubMed ID: 34435102 [Abstract] [Full Text] [Related]
4. An ensemble learning method with GAN-based sampling and consistency check for anomaly detection of imbalanced data streams with concept drift. Liu Y, Wang S, Sui H, Zhu L. PLoS One; 2024 Jun 01; 19(1):e0292140. PubMed ID: 38277426 [Abstract] [Full Text] [Related]
5. Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction. Rahmani K, Thapa R, Tsou P, Casie Chetty S, Barnes G, Lam C, Foon Tso C. Int J Med Inform; 2023 May 01; 173():104930. PubMed ID: 36893656 [Abstract] [Full Text] [Related]
6. A survey on detecting healthcare concept drift in AI/ML models from a finance perspective. M S AR, C R N, B R S, Lahza H, Lahza HFM. Front Artif Intell; 2022 May 01; 5():955314. PubMed ID: 37139355 [Abstract] [Full Text] [Related]
7. One or two things we know about concept drift-a survey on monitoring in evolving environments. Part B: locating and explaining concept drift. Hinder F, Vaquet V, Hammer B. Front Artif Intell; 2024 May 01; 7():1330258. PubMed ID: 39100107 [Abstract] [Full Text] [Related]
8. Mining Massive E-Health Data Streams for IoMT Enabled Healthcare Systems. Toor AA, Usman M, Younas F, M Fong AC, Khan SA, Fong S. Sensors (Basel); 2020 Apr 09; 20(7):. PubMed ID: 32283841 [Abstract] [Full Text] [Related]
9. Anomaly Detection and Concept Drift Adaptation for Dynamic Systems: A General Method with Practical Implementation Using an Industrial Collaborative Robot. Kermenov R, Nabissi G, Longhi S, Bonci A. Sensors (Basel); 2023 Mar 20; 23(6):. PubMed ID: 36991969 [Abstract] [Full Text] [Related]
10. Meta-cognitive online sequential extreme learning machine for imbalanced and concept-drifting data classification. Mirza B, Lin Z. Neural Netw; 2016 Aug 20; 80():79-94. PubMed ID: 27187873 [Abstract] [Full Text] [Related]
13. Assessing the effects of data drift on the performance of machine learning models used in clinical sepsis prediction. Rahmani K, Thapa R, Tsou P, Chetty SC, Barnes G, Lam C, Tso CF. medRxiv; 2022 Jun 07. PubMed ID: 35702157 [Abstract] [Full Text] [Related]
15. Multi-Cat Monitoring System Based on Concept Drift Adaptive Machine Learning Architecture. Cho Y, Song E, Ji Y, Yang S, Kim T, Park S, Baek D, Yu S. Sensors (Basel); 2023 Oct 31; 23(21):. PubMed ID: 37960551 [Abstract] [Full Text] [Related]
19. A Classifier Graph Based Recurring Concept Detection and Prediction Approach. Sun Y, Wang Z, Bai Y, Dai H, Nahavandi S. Comput Intell Neurosci; 2018 Oct 31; 2018():4276291. PubMed ID: 29977276 [Abstract] [Full Text] [Related]