These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
42. Substrate-dependent hysteretic behavior in StEH1-catalyzed hydrolysis of styrene oxide derivatives. Lindberg D, Gogoll A, Widersten M. FEBS J; 2008 Dec; 275(24):6309-20. PubMed ID: 19016837 [Abstract] [Full Text] [Related]
43. Biotechnological production of enantiopure epoxides by enzymatic kinetic resolution. Choi WJ. Appl Microbiol Biotechnol; 2009 Aug; 84(2):239-47. PubMed ID: 19590868 [Abstract] [Full Text] [Related]
44. Stereoselective and regioselective hydration of 7-methylbenz[c]acridine-5,6-oxide enantiomers by rodent and human microsomal epoxide hydrolases. Roberts-Thomson SJ, McManus ME, Duke CC, Agnew R, Holder GM. Mol Pharmacol; 1996 Jan; 49(1):105-11. PubMed ID: 8569695 [Abstract] [Full Text] [Related]
45. Kinetic resolution of racemic styrene oxide at a high concentration by recombinant Aspergillus usamii epoxide hydrolase in an n-hexanol/buffer biphasic system. Hu D, Wang R, Shi XL, Ye HH, Wu Q, Wu MC, Chu JJ. J Biotechnol; 2016 Oct 20; 236():152-8. PubMed ID: 27546798 [Abstract] [Full Text] [Related]
46. Comparison of styrene oxide enantiomers for hepatotoxic and pneumotoxic effects in microsomal epoxide hydrolase-deficient mice. Carlson GP. J Toxicol Environ Health A; 2011 Oct 20; 74(6):347-50. PubMed ID: 21271435 [Abstract] [Full Text] [Related]
47. Biocatalytic resolution of glycidyl aryl ethers by Trichosporon loubierii : cell/substrate ratio influences the optical purity of (R) - epoxides. Xu Y, Xu JH, Pan J, Tang YF. Biotechnol Lett; 2004 Aug 20; 26(15):1217-21. PubMed ID: 15289677 [Abstract] [Full Text] [Related]
48. Microbiological transformations--XXIX. Enantioselective hydrolysis of epoxides using microorganisms: a mechanistic study. Pedragosa-Moreau S, Archelas A, Furstoss R. Bioorg Med Chem; 1994 Jul 20; 2(7):609-16. PubMed ID: 7858966 [Abstract] [Full Text] [Related]
49. Facile synthesis of 2-hydroxyacetophenone from racemic styrene oxide catalyzed by engineered enzymes. Söderlund I, Tjärnhage E, Hamnevik E, Widersten M. Biotechnol Lett; 2022 Aug 20; 44(8):985-990. PubMed ID: 35731351 [Abstract] [Full Text] [Related]
50. Sphingorhabdus arenilitoris sp. nov., isolated from a coastal sand, and reclassification of Sphingopyxis rigui as Sphingorhabdus rigui comb. nov. and Sphingopyxis wooponensis as Sphingorhabdus wooponensis comb. nov. Park JM, Park S, Jung YT, Kim H, Lee JS, Yoon JH. Int J Syst Evol Microbiol; 2014 Aug 20; 64(Pt 8):2551-2557. PubMed ID: 24812363 [Abstract] [Full Text] [Related]
51. Production of (R)-ethyl-3,4-epoxybutyrate by newly isolated Acinetobacter baumannii containing epoxide hydrolase. Choi WJ, Puah SM, Tan LL, Ng SS. Appl Microbiol Biotechnol; 2008 May 20; 79(1):61-7. PubMed ID: 18301887 [Abstract] [Full Text] [Related]
52. Epoxide hydrolase-mediated enantioconvergent bioconversions to prepare chiral epoxides and alcohols. Lee EY. Biotechnol Lett; 2008 Sep 20; 30(9):1509-14. PubMed ID: 18425428 [Abstract] [Full Text] [Related]
53. Description of Sphingorhabdus planktonica gen. nov., sp. nov. and reclassification of three related members of the genus Sphingopyxis in the genus Sphingorhabdus gen. nov. Jogler M, Chen H, Simon J, Rohde M, Busse HJ, Klenk HP, Tindall BJ, Overmann J. Int J Syst Evol Microbiol; 2013 Apr 20; 63(Pt 4):1342-1349. PubMed ID: 22798658 [Abstract] [Full Text] [Related]
54. [Isolation of a bacterium producing epoxide hydrolase with high enantioselectivity and optimization of fermentation conditions]. Li C, Cui H, Tian X, Ji A, Qu Y. Wei Sheng Wu Xue Bao; 2003 Jun 20; 43(3):422-6. PubMed ID: 16279213 [Abstract] [Full Text] [Related]
55. Enantioconvergent hydrolysis of m-nitrostyrene oxide at an elevated concentration by Phaseolus vulgaris epoxide hydrolase in the organic/aqueous two-phase system. Wen Z, Zhao J, Liu YY, Zhou JJ, Liu C, Li C, Wu MC. Lett Appl Microbiol; 2020 Mar 20; 70(3):181-188. PubMed ID: 31784998 [Abstract] [Full Text] [Related]
56. Interspecies differences in the enantioselectivity of epoxide hydrolases in Cryptococcus laurentii (Kufferath) C.E. Skinner and Cryptococcus podzolicus (Bab'jeva & Reshetova) Golubev. Botes AL, Lotter J, Rhode OH, Botha A. Syst Appl Microbiol; 2005 Jan 20; 28(1):27-33. PubMed ID: 15709362 [Abstract] [Full Text] [Related]
57. Kinetics and stereochemistry of the microsomal epoxide hydrolase-catalyzed hydrolysis of cis-stilbene oxides. Bellucci G, Chiappe C, Ingrosso G. Chirality; 1994 Jan 20; 6(7):577-82. PubMed ID: 7986671 [Abstract] [Full Text] [Related]
58. Stereoselectivity of microsomal epoxide hydrolase toward diol epoxides and tetrahydroepoxides derived from benz[a]anthracene. Sayer JM, Yagi H, van Bladeren PJ, Levin W, Jerina DM. J Biol Chem; 1985 Feb 10; 260(3):1630-40. PubMed ID: 3968083 [Abstract] [Full Text] [Related]
59. Enantioselective hydrolysis of glycidyl methylphenyl ethers by Botryosphaeria dothidea ZJUZQ007: effect of substitution pattern on enantioselectivity. Sheng Y, Wei C, Zhang Z, Wang S, Zhu Q. Appl Biochem Biotechnol; 2011 May 10; 164(2):125-32. PubMed ID: 21057981 [Abstract] [Full Text] [Related]
60. Enantioconvergent hydrolysis of styrene epoxides by newly discovered epoxide hydrolases in mung bean. Xu W, Xu JH, Pan J, Gu Q, Wu XY. Org Lett; 2006 Apr 13; 8(8):1737-40. PubMed ID: 16597154 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]