These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
153 related items for PubMed ID: 34067802
1. The Molecular Mechanism of Fludioxonil Action Is Different to Osmotic Stress Sensing. Bersching K, Jacob S. J Fungi (Basel); 2021 May 17; 7(5):. PubMed ID: 34067802 [Abstract] [Full Text] [Related]
2. High osmolarity glycerol (HOG) signalling in Magnaporthe oryzae: Identification of MoYPD1 and its role in osmoregulation, fungicide action, and pathogenicity. Jacob S, Foster AJ, Yemelin A, Thines E. Fungal Biol; 2015 Jul 17; 119(7):580-94. PubMed ID: 26058534 [Abstract] [Full Text] [Related]
3. Hog1p activation by marasmic acid through inhibition of the histidine kinase Sln1p. Jacob S, Schüffler A, Thines E. Pest Manag Sci; 2016 Jun 17; 72(6):1268-74. PubMed ID: 26888741 [Abstract] [Full Text] [Related]
4. Visualizing fungicide action: an in vivo tool for rapid validation of fungicides with target location HOG pathway. Bohnert S, Neumann H, Thines E, Jacob S. Pest Manag Sci; 2019 Mar 17; 75(3):772-778. PubMed ID: 30123985 [Abstract] [Full Text] [Related]
5. A Target-Based In Vivo Test System to Identify Novel Fungicides with Mode of Action in the HOG Pathway. Bohnert S, Neumann H, Jacob S. Methods Mol Biol; 2021 Mar 17; 2356():121-127. PubMed ID: 34236682 [Abstract] [Full Text] [Related]
6. Overexpression of the CORVET complex alleviates the fungicidal effects of fludioxonil on the yeast Saccharomyces cerevisiae expressing hybrid histidine kinase 3. Randhawa A, Kundu D, Sharma A, Prasad R, Mondal AK. J Biol Chem; 2019 Jan 11; 294(2):461-475. PubMed ID: 30446623 [Abstract] [Full Text] [Related]
7. Phenylpyrrole fungicides act on triosephosphate isomerase to induce methylglyoxal stress and alter hybrid histidine kinase activity. Brandhorst TT, Kean IRL, Lawry SM, Wiesner DL, Klein BS. Sci Rep; 2019 Mar 25; 9(1):5047. PubMed ID: 30911085 [Abstract] [Full Text] [Related]
8. Transcriptional profiling for Aspergillusnidulans HogA MAPK signaling pathway in response to fludioxonil and osmotic stress. Hagiwara D, Asano Y, Marui J, Yoshimi A, Mizuno T, Abe K. Fungal Genet Biol; 2009 Nov 25; 46(11):868-78. PubMed ID: 19596074 [Abstract] [Full Text] [Related]
9. Characterization of genetic and biochemical mechanisms of fludioxonil and pyrimethanil resistance in field isolates of Penicillium digitatum. Kanetis L, Förster H, Jones CA, Borkovich KA, Adaskaveg JE. Phytopathology; 2008 Feb 25; 98(2):205-14. PubMed ID: 18943197 [Abstract] [Full Text] [Related]
10. Involvement of putative response regulator genes of the rice blast fungus Magnaporthe oryzae in osmotic stress response, fungicide action, and pathogenicity. Motoyama T, Ochiai N, Morita M, Iida Y, Usami R, Kudo T. Curr Genet; 2008 Oct 25; 54(4):185-95. PubMed ID: 18726099 [Abstract] [Full Text] [Related]
11. Distinct role of HAMP and HAMP-like linker domains in regulating the activity of Hik1p, a hybrid histidine kinase 3 from Magnaporthe oryzae. Kaur H, Sasan SP, Yadav A, Martoliya Y, Mondal AK. Mol Genet Genomics; 2021 Sep 25; 296(5):1135-1145. PubMed ID: 34196769 [Abstract] [Full Text] [Related]
12. Dic2 and Dic3 loci confer osmotic adaptation and fungicidal sensitivity independent of the HOG pathway in Cochliobolus heterostrophus. Izumitsu K, Yoshimi A, Hamada S, Morita A, Saitoh Y, Tanaka C. Mycol Res; 2009 Oct 25; 113(Pt 10):1208-15. PubMed ID: 19682577 [Abstract] [Full Text] [Related]
13. Biological Characteristics and Molecular Mechanism of Fludioxonil Resistance in Botrytis cinerea From Henan Province of China. Zhou F, Hu HY, Song YL, Gao YQ, Liu QL, Song PW, Chen EY, Yu YA, Li DX, Li CW. Plant Dis; 2020 Apr 25; 104(4):1041-1047. PubMed ID: 31999220 [Abstract] [Full Text] [Related]
14. Characterization of mutations in the two-component histidine kinase gene that confer fludioxonil resistance and osmotic sensitivity in the os-1 mutants of Neurospora crassa. Ochiai N, Fujimura M, Motoyama T, Ichiishi A, Usami R, Horikoshi K, Yamaguchi I. Pest Manag Sci; 2001 May 25; 57(5):437-42. PubMed ID: 11374161 [Abstract] [Full Text] [Related]
15. The response regulator Skn7 of Aspergillus fumigatus is essential for the antifungal effect of fludioxonil. Schruefer S, Böhmer I, Dichtl K, Spadinger A, Kleinemeier C, Ebel F. Sci Rep; 2021 Mar 05; 11(1):5317. PubMed ID: 33674651 [Abstract] [Full Text] [Related]
16. CgHog1 controls the adaptation to both sorbitol and fludioxonil in Colletotrichum gloeosporioides. Li Y, He P, Tian C, Wang Y. Fungal Genet Biol; 2020 Feb 05; 135():103289. PubMed ID: 31704368 [Abstract] [Full Text] [Related]
17. Molecular and Biochemical Characterization of Laboratory and Field Mutants of Botrytis cinerea Resistant to Fludioxonil. Ren W, Shao W, Han X, Zhou M, Chen C. Plant Dis; 2016 Jul 05; 100(7):1414-1423. PubMed ID: 30686204 [Abstract] [Full Text] [Related]
18. BEM2, a RHO GTPase Activating Protein That Regulates Morphogenesis in S. cerevisiae, Is a Downstream Effector of Fungicidal Action of Fludioxonil. Sharma A, Martoliya Y, Mondal AK. J Fungi (Basel); 2022 Jul 21; 8(7):. PubMed ID: 35887509 [Abstract] [Full Text] [Related]
19. Exploring the Biological and Molecular Characteristics of Resistance to Fludioxonil in Sclerotinia sclerotiorum From Soybean in China. Zhou F, Hu HY, Li DX, Tan LG, Zhang Q, Gao HT, Sun HL, Tian XL, Shi MW, Zhang FL, Li CW. Plant Dis; 2021 Jul 21; 105(7):1936-1941. PubMed ID: 33044139 [Abstract] [Full Text] [Related]
20. Fludioxonil Induces Drk1, a Fungal Group III Hybrid Histidine Kinase, To Dephosphorylate Its Downstream Target, Ypd1. Lawry SM, Tebbets B, Kean I, Stewart D, Hetelle J, Klein BS. Antimicrob Agents Chemother; 2017 Feb 21; 61(2):. PubMed ID: 27872062 [Abstract] [Full Text] [Related] Page: [Next] [New Search]