These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


350 related items for PubMed ID: 34079518

  • 21. Reduced Na+ K+ -ATPase activity may reduce amino acid uptake in intrauterine growth restricted fetal sheep muscle despite unchanged ex vivo amino acid transporter activity.
    Stremming J, Jansson T, Powell TL, Rozance PJ, Brown LD.
    J Physiol; 2020 Apr; 598(8):1625-1639. PubMed ID: 31909825
    [Abstract] [Full Text] [Related]

  • 22. Intrauterine growth retardation increases the susceptibility of pigs to high-fat diet-induced mitochondrial dysfunction in skeletal muscle.
    Liu J, Chen D, Yao Y, Yu B, Mao X, He J, Huang Z, Zheng P.
    PLoS One; 2012 Apr; 7(4):e34835. PubMed ID: 22523560
    [Abstract] [Full Text] [Related]

  • 23.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 24.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 25. Dysfunctional Postnatal Mitochondrial Energy Metabolism in a Patient with Neurodevelopmental Defects Caused by Intrauterine Growth Restriction Due to Idiopathic Placental Insufficiency.
    Uittenbogaard M, Gropman AL, Whitehead MT, Brantner CA, Gropman E, Chiaramello A.
    Int J Mol Sci; 2024 Jan 23; 25(3):. PubMed ID: 38338665
    [Abstract] [Full Text] [Related]

  • 26. Impaired oxidative phosphorylation in hepatic mitochondria in growth-retarded rats.
    Peterside IE, Selak MA, Simmons RA.
    Am J Physiol Endocrinol Metab; 2003 Dec 23; 285(6):E1258-66. PubMed ID: 14607783
    [Abstract] [Full Text] [Related]

  • 27. Postnatal development of skeletal muscle in pigs with intrauterine growth restriction: morphofunctional phenotype and molecular mechanisms.
    Felicioni F, Pereira AD, Caldeira-Brant AL, Santos TG, Paula TMD, Magnabosco D, Bortolozzo FP, Tsoi S, Dyck MK, Dixon W, Martinelli PM, Jorge EC, Chiarini-Garcia H, Almeida FRCL.
    J Anat; 2020 May 23; 236(5):840-853. PubMed ID: 31997379
    [Abstract] [Full Text] [Related]

  • 28. Chronic exposure to elevated norepinephrine suppresses insulin secretion in fetal sheep with placental insufficiency and intrauterine growth restriction.
    Leos RA, Anderson MJ, Chen X, Pugmire J, Anderson KA, Limesand SW.
    Am J Physiol Endocrinol Metab; 2010 Apr 23; 298(4):E770-8. PubMed ID: 20086198
    [Abstract] [Full Text] [Related]

  • 29.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 30.
    ; . PubMed ID:
    [No Abstract] [Full Text] [Related]

  • 31. Skeletal Muscle Damage in Intrauterine Growth Restriction.
    Năstase L, Cretoiu D, Stoicescu SM.
    Adv Exp Med Biol; 2018 Apr 23; 1088():93-106. PubMed ID: 30390249
    [Abstract] [Full Text] [Related]

  • 32. Increased fetal myocardial sensitivity to insulin-stimulated glucose metabolism during ovine fetal growth restriction.
    Barry JS, Rozance PJ, Brown LD, Anthony RV, Thornburg KL, Hay WW.
    Exp Biol Med (Maywood); 2016 Apr 23; 241(8):839-47. PubMed ID: 26873920
    [Abstract] [Full Text] [Related]

  • 33. Intrauterine growth restriction elevates circulating acylcarnitines and suppresses fatty acid metabolism genes in the fetal sheep heart.
    Drake RR, Louey S, Thornburg KL.
    J Physiol; 2022 Feb 23; 600(3):655-670. PubMed ID: 34802149
    [Abstract] [Full Text] [Related]

  • 34. Mechanistic Target of Rapamycin Complex 1 Promotes the Expression of Genes Encoding Electron Transport Chain Proteins and Stimulates Oxidative Phosphorylation in Primary Human Trophoblast Cells by Regulating Mitochondrial Biogenesis.
    Rosario FJ, Gupta MB, Myatt L, Powell TL, Glenn JP, Cox L, Jansson T.
    Sci Rep; 2019 Jan 22; 9(1):246. PubMed ID: 30670706
    [Abstract] [Full Text] [Related]

  • 35. Augmented glucose production is not contingent on high catecholamines in fetal sheep with IUGR.
    Davis MA, Camacho LE, Pendleton AL, Antolic AT, Luna-Ramirez RI, Kelly AC, Steffens NR, Anderson MJ, Limesand SW.
    J Endocrinol; 2021 May 13; 249(3):195-207. PubMed ID: 33994373
    [Abstract] [Full Text] [Related]

  • 36. Differential effects of intrauterine growth restriction and a hypersinsulinemic-isoglycemic clamp on metabolic pathways and insulin action in the fetal liver.
    Jones AK, Brown LD, Rozance PJ, Serkova NJ, Hay WW, Friedman JE, Wesolowski SR.
    Am J Physiol Regul Integr Comp Physiol; 2019 May 01; 316(5):R427-R440. PubMed ID: 30758974
    [Abstract] [Full Text] [Related]

  • 37. Adrenal Demedullation and Oxygen Supplementation Independently Increase Glucose-Stimulated Insulin Concentrations in Fetal Sheep With Intrauterine Growth Restriction.
    Macko AR, Yates DT, Chen X, Shelton LA, Kelly AC, Davis MA, Camacho LE, Anderson MJ, Limesand SW.
    Endocrinology; 2016 May 01; 157(5):2104-15. PubMed ID: 26937714
    [Abstract] [Full Text] [Related]

  • 38. Limited capacity for glucose oxidation in fetal sheep with intrauterine growth restriction.
    Brown LD, Rozance PJ, Bruce JL, Friedman JE, Hay WW, Wesolowski SR.
    Am J Physiol Regul Integr Comp Physiol; 2015 Oct 15; 309(8):R920-8. PubMed ID: 26224688
    [Abstract] [Full Text] [Related]

  • 39. Prolonged amino acid infusion into intrauterine growth-restricted fetal sheep increases leucine oxidation rates.
    Wai SG, Rozance PJ, Wesolowski SR, Hay WW, Brown LD.
    Am J Physiol Endocrinol Metab; 2018 Dec 01; 315(6):E1143-E1153. PubMed ID: 30205012
    [Abstract] [Full Text] [Related]

  • 40. An animal model of placental insufficiency-induced intrauterine growth restriction.
    Barry JS, Rozance PJ, Anthony RV.
    Semin Perinatol; 2008 Jun 01; 32(3):225-30. PubMed ID: 18482626
    [Abstract] [Full Text] [Related]


    Page: [Previous] [Next] [New Search]
    of 18.