These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


PUBMED FOR HANDHELDS

Journal Abstract Search


252 related items for PubMed ID: 34081584

  • 1. A Compact Sub-μW CMOS ECG Amplifier With 57.5-MΩ Zin, 2.02 NEF, 8.16 PEF and 83.24-dB CMRR.
    Sawigun C, Thanapitak S.
    IEEE Trans Biomed Circuits Syst; 2021 Jun; 15(3):549-558. PubMed ID: 34081584
    [Abstract] [Full Text] [Related]

  • 2. A Micropower Chopper CBIA Using DSL-Embedded Input Stage With 0.4 V EO Tolerance for Dry-Electrode Biopotential Recording.
    Thanapitak S, Surakampontorn W, Sawigun C.
    IEEE Trans Biomed Circuits Syst; 2023 Jun; 17(3):458-469. PubMed ID: 37023150
    [Abstract] [Full Text] [Related]

  • 3. A 2.55 NEF 76 dB CMRR DC-Coupled Fully Differential Difference Amplifier Based Analog Front End for Wearable Biomedical Sensors.
    Zhao Y, Shang Z, Lian Y.
    IEEE Trans Biomed Circuits Syst; 2019 Oct; 13(5):918-926. PubMed ID: 31247560
    [Abstract] [Full Text] [Related]

  • 4. A Low-power and Low-noise Multi-purpose Chopper Amplifier with High CMRR and PSRR.
    Shad E, Molinas M, Ytterdal T.
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():3998-4001. PubMed ID: 33018876
    [Abstract] [Full Text] [Related]

  • 5. A Low-Voltage Chopper-Stabilized Amplifier for Fetal ECG Monitoring With a 1.41 Power Efficiency Factor.
    Song S, Rooijakkers M, Harpe P, Rabotti C, Mischi M, van Roermund AH, Cantatore E.
    IEEE Trans Biomed Circuits Syst; 2015 Apr; 9(2):237-47. PubMed ID: 25879971
    [Abstract] [Full Text] [Related]

  • 6. A Fully Reconfigurable Low-Noise Biopotential Sensing Amplifier With 1.96 Noise Efficiency Factor.
    Tzu-Yun Wang, Min-Rui Lai, Twigg CM, Sheng-Yu Peng.
    IEEE Trans Biomed Circuits Syst; 2014 Jun; 8(3):411-22. PubMed ID: 24108476
    [Abstract] [Full Text] [Related]

  • 7. A Low-Noise, Low-Power Amplifier With Current-Reused OTA for ECG Recordings.
    Zhang J, Zhang H, Sun Q, Zhang R.
    IEEE Trans Biomed Circuits Syst; 2018 Jun; 12(3):700-708. PubMed ID: 29877832
    [Abstract] [Full Text] [Related]

  • 8. A TDM-Based 16-Channel AFE ASIC With Enhanced System-Level CMRR for Wearable EEG Recording With Dry Electrodes.
    Tang T, Goh WL, Yao L, Gao Y.
    IEEE Trans Biomed Circuits Syst; 2020 Jun; 14(3):516-524. PubMed ID: 32167908
    [Abstract] [Full Text] [Related]

  • 9. Bandwidth tunable amplifier for recording biopotential signals.
    Hwang S, Aninakwa K, Sonkusale S.
    Annu Int Conf IEEE Eng Med Biol Soc; 2010 Jun; 2010():662-5. PubMed ID: 21096549
    [Abstract] [Full Text] [Related]

  • 10. Power-to-Noise Optimization in the Design of Neural Recording Amplifier Based on Current Scaling, Source Degeneration Resistor, and Current Reuse.
    Wang Z, Wang X, Shu G, Yin M, Huang S, Yin M.
    Biosensors (Basel); 2024 Feb 19; 14(2):. PubMed ID: 38392030
    [Abstract] [Full Text] [Related]

  • 11. A compact, low input capacitance neural recording amplifier.
    Ng KA, Xu YP.
    IEEE Trans Biomed Circuits Syst; 2013 Oct 19; 7(5):610-20. PubMed ID: 24144666
    [Abstract] [Full Text] [Related]

  • 12. A Power Efficient Low-noise and High Swing CMOS Amplifier for Neural Recording Applications.
    Naderi K, Shad E, Molinas M, Heidari A.
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul 19; 2020():4298-4301. PubMed ID: 33018946
    [Abstract] [Full Text] [Related]

  • 13. A High CMRR Differential Difference Amplifier Employing Combined Input Pairs for Neural Signal Recordings.
    Zhu L, Zhou Z, Wang W, Xie S, Meng Q, Wang Z.
    IEEE Trans Biomed Circuits Syst; 2024 Feb 19; 18(1):100-110. PubMed ID: 37665710
    [Abstract] [Full Text] [Related]

  • 14. Enhanced ICMR amplifier for high CMRR biopotential recordings.
    Oreggioni J, Castro-Lisboa P, Silveira F.
    Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul 19; 2019():3746-3749. PubMed ID: 31946689
    [Abstract] [Full Text] [Related]

  • 15. Composite instrumentation amplifier for biopotentials.
    Pallás-Areny R, Webster JG.
    Ann Biomed Eng; 1990 Jul 19; 18(3):251-62. PubMed ID: 2372162
    [Abstract] [Full Text] [Related]

  • 16. A 4-μW Analog Front End Achieving 2.4 NEF for Long-Term ECG Monitoring.
    Yang W, Jiang H, Yin Y, Wang Z.
    IEEE Trans Biomed Circuits Syst; 2021 Aug 19; 15(4):655-665. PubMed ID: 34043513
    [Abstract] [Full Text] [Related]

  • 17. A 0.67 μV-IIRN super-T Ω-Z IN 17.5 μW/Ch Active Electrode With In-Channel Boosted CMRR for Distributed EEG Monitoring.
    Dabbaghian A, El-Hajj Y, Ghalamboran M, Grau G, Kassiri H.
    IEEE Trans Biomed Circuits Syst; 2024 Feb 19; 18(1):3-15. PubMed ID: 37535484
    [Abstract] [Full Text] [Related]

  • 18. Fully Integrated Biopotential Acquisition Analog Front-End IC.
    Song H, Park Y, Kim H, Ko H.
    Sensors (Basel); 2015 Sep 30; 15(10):25139-56. PubMed ID: 26437404
    [Abstract] [Full Text] [Related]

  • 19. A 160 μA biopotential acquisition IC with fully integrated IA and motion artifact suppression.
    Van Helleputte N, Kim S, Kim H, Kim JP, Van Hoof C, Yazicioglu RF.
    IEEE Trans Biomed Circuits Syst; 2012 Dec 30; 6(6):552-61. PubMed ID: 23853256
    [Abstract] [Full Text] [Related]

  • 20. A 0.5-V multi-channel low-noise readout front-end for portable EEG acquisition.
    Wen-Yen Huang, Yu-Wei Cheng, Kea-Tiong Tang.
    Annu Int Conf IEEE Eng Med Biol Soc; 2015 Aug 30; 2015():837-40. PubMed ID: 26736392
    [Abstract] [Full Text] [Related]


    Page: [Next] [New Search]
    of 13.