These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
161 related items for PubMed ID: 34110138
1. Nanostructure-Mediated Phase Evolution in Lithiation/Delithiation of Co3O4. Fu Y, Guo X, Xu Z, Zhao G, Xu C, Zhu Y, Zhou L. ACS Appl Mater Interfaces; 2021 Jun 23; 13(24):28171-28180. PubMed ID: 34110138 [Abstract] [Full Text] [Related]
2. Self-Assembled Framework Formed During Lithiation of SnS2 Nanoplates Revealed by in Situ Electron Microscopy. Yin K, Zhang M, Hood ZD, Pan J, Meng YS, Chi M. Acc Chem Res; 2017 Jul 18; 50(7):1513-1520. PubMed ID: 28682057 [Abstract] [Full Text] [Related]
3. In Situ Transmission Electron Microscopy Observation of the Lithiation-Delithiation Conversion Behavior of CuO/Graphene Anode. Su Q, Yao L, Zhang J, Du G, Xu B. ACS Appl Mater Interfaces; 2015 Oct 21; 7(41):23062-8. PubMed ID: 26437926 [Abstract] [Full Text] [Related]
4. Graphene Liquid Cell Electron Microscopy of Initial Lithiation in Co3O4 Nanoparticles. Chang JH, Cheong JY, Kim SJ, Shim YS, Park JY, Seo HK, Dae KS, Lee CW, Kim ID, Yuk JM. ACS Omega; 2019 Apr 30; 4(4):6784-6788. PubMed ID: 31459800 [Abstract] [Full Text] [Related]
5. Reactions of graphene supported Co3O4 nanocubes with lithium and magnesium studied by in situ transmission electron microscopy. Luo L, Wu J, Li Q, Dravid VP, Poeppelmeier KR, Rao Q, Xu J. Nanotechnology; 2016 Feb 26; 27(8):085402. PubMed ID: 26808457 [Abstract] [Full Text] [Related]
7. Nanoporous Composites of CoO x Quantum Dots and ZIF-Derived Carbon as High-Performance Anodes for Lithium-Ion Batteries. Lu D, Yuan C, Yu M, Yang Y, Wang C, Guan R, Bian X. ACS Omega; 2020 Sep 01; 5(34):21488-21496. PubMed ID: 32905499 [Abstract] [Full Text] [Related]
8. Surface-coating regulated lithiation kinetics and degradation in silicon nanowires for lithium ion battery. Luo L, Yang H, Yan P, Travis JJ, Lee Y, Liu N, Piper DM, Lee SH, Zhao P, George SM, Zhang JG, Cui Y, Zhang S, Ban C, Wang CM. ACS Nano; 2015 May 26; 9(5):5559-66. PubMed ID: 25893684 [Abstract] [Full Text] [Related]
9. Hollow/porous nanostructures derived from nanoscale metal-organic frameworks towards high performance anodes for lithium-ion batteries. Hu L, Chen Q. Nanoscale; 2014 May 26; 6(3):1236-57. PubMed ID: 24356788 [Abstract] [Full Text] [Related]
10. In Situ Synthesis and Unprecedented Electrochemical Performance of Double Carbon Coated Cross-Linked Co3O4. Wang Y, Fan S, Wu S, Wang C, Huang Z, Zhang L. ACS Appl Mater Interfaces; 2018 Dec 12; 10(49):42372-42379. PubMed ID: 30431254 [Abstract] [Full Text] [Related]
11. In situ transmission electron microscopy observation of the conversion mechanism of Fe2O3/graphene anode during lithiation-delithiation processes. Su Q, Xie D, Zhang J, Du G, Xu B. ACS Nano; 2013 Oct 22; 7(10):9115-21. PubMed ID: 24015669 [Abstract] [Full Text] [Related]
12. Study on the Electrochemical Reaction Mechanism of ZnFe2O4 by In Situ Transmission Electron Microscopy. Su Q, Wang S, Yao L, Li H, Du G, Ye H, Fang Y. Sci Rep; 2016 Jun 16; 6():28197. PubMed ID: 27306189 [Abstract] [Full Text] [Related]
13. Shedding X-ray Light on the Interfacial Electrochemistry of Silicon Anodes for Li-Ion Batteries. Cao C, Shyam B, Wang J, Toney MF, Steinrück HG. Acc Chem Res; 2019 Sep 17; 52(9):2673-2683. PubMed ID: 31479242 [Abstract] [Full Text] [Related]
14. The electrochemical properties of Co3O4 as a lithium-ion battery electrode: a first-principles study. Liu WW, Lau WM, Zhang Y. Phys Chem Chem Phys; 2018 Oct 03; 20(38):25016-25022. PubMed ID: 30246198 [Abstract] [Full Text] [Related]
15. Hierarchical structure promoted lithiation/delithiation behavior of a double-carbon microsphere supported nano-Co3O4 anode. Liu M, Li H, Yu J, Zhang S, Chen Q, Lu W, Yuan A, Zhong L, Sun L. Nanoscale; 2024 Feb 08; 16(6):3043-3052. PubMed ID: 38235520 [Abstract] [Full Text] [Related]
16. New Insights into Electrochemical Lithiation/Delithiation Mechanism of α-MoO3 Nanobelt by in Situ Transmission Electron Microscopy. Xia W, Zhang Q, Xu F, Sun L. ACS Appl Mater Interfaces; 2016 Apr 13; 8(14):9170-7. PubMed ID: 27008317 [Abstract] [Full Text] [Related]
17. Atomic resolution study of reversible conversion reaction in metal oxide electrodes for lithium-ion battery. Luo L, Wu J, Xu J, Dravid VP. ACS Nano; 2014 Nov 25; 8(11):11560-6. PubMed ID: 25337887 [Abstract] [Full Text] [Related]
18. In Situ, Atomic-Resolution Observation of Lithiation and Sodiation of WS2 Nanoflakes: Implications for Lithium-Ion and Sodium-Ion Batteries. Xu Y, Wang K, Yao Z, Kang J, Lam D, Yang D, Ai W, Wolverton C, Hersam MC, Huang Y, Huang W, Dravid VP, Wu J. Small; 2021 Jun 25; 17(24):e2100637. PubMed ID: 33982862 [Abstract] [Full Text] [Related]
19. A Double-Buffering Strategy to Boost the Lithium Storage of Botryoid MnOx /C Anodes. Yang C, Yao Y, Lian Y, Chen Y, Shah R, Zhao X, Chen M, Peng Y, Deng Z. Small; 2019 Apr 25; 15(16):e1900015. PubMed ID: 30924269 [Abstract] [Full Text] [Related]
20. Revealing the conversion mechanism of CuO nanowires during lithiation-delithiation by in situ transmission electron microscopy. Wang X, Tang DM, Li H, Yi W, Zhai T, Bando Y, Golberg D. Chem Commun (Camb); 2012 May 18; 48(40):4812-4. PubMed ID: 22388332 [Abstract] [Full Text] [Related] Page: [Next] [New Search]