These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
Pubmed for Handhelds
PUBMED FOR HANDHELDS
Journal Abstract Search
399 related items for PubMed ID: 34118683
21. A 3-Ketoacyl-CoA Synthase 10 (KCS10) Homologue from Alfalfa Enhances Drought Tolerance by Regulating Cuticular Wax Biosynthesis. Wang Y, Liu Y, Pan X, Wan Y, Li Z, Xie Z, Hu T, Yang P. J Agric Food Chem; 2023 Oct 11; 71(40):14493-14504. PubMed ID: 37682587 [Abstract] [Full Text] [Related]
22. Transcriptome analysis of microRNA156 overexpression alfalfa roots under drought stress. Arshad M, Gruber MY, Hannoufa A. Sci Rep; 2018 Jun 19; 8(1):9363. PubMed ID: 29921939 [Abstract] [Full Text] [Related]
23. Comparative transcriptomic analysis of contrasting hybrid cultivars reveal key drought-responsive genes and metabolic pathways regulating drought stress tolerance in maize at various stages. Liu S, Zenda T, Li J, Wang Y, Liu X, Duan H. PLoS One; 2020 Jun 19; 15(10):e0240468. PubMed ID: 33057352 [Abstract] [Full Text] [Related]
24. Biomass partitioning, morphology and water status of four alfalfa genotypes submitted to progressive drought and subsequent recovery. Erice G, Louahlia S, Irigoyen JJ, Sanchez-Diaz M, Avice JC. J Plant Physiol; 2010 Jan 15; 167(2):114-20. PubMed ID: 19744745 [Abstract] [Full Text] [Related]
25. Global regulation of reactive oxygen species scavenging genes in alfalfa root and shoot under gradual drought stress and recovery. Kang Y, Udvardi M. Plant Signal Behav; 2012 May 15; 7(5):539-43. PubMed ID: 22516821 [Abstract] [Full Text] [Related]
26. Comparative transcriptome sequencing of tolerant rice introgression line and its parents in response to drought stress. Huang L, Zhang F, Zhang F, Wang W, Zhou Y, Fu B, Li Z. BMC Genomics; 2014 Nov 26; 15(1):1026. PubMed ID: 25428615 [Abstract] [Full Text] [Related]
27. Genome-wide analysis of the Glutathione S-Transferase family in wild Medicago ruthenica and drought-tolerant breeding application of MruGSTU39 gene in cultivated alfalfa. Wang T, Zhang D, Chen L, Wang J, Zhang WH. Theor Appl Genet; 2022 Mar 26; 135(3):853-864. PubMed ID: 34817619 [Abstract] [Full Text] [Related]
29. Genome-Wide Identification and Analysis of the NF-Y Transcription Factor Family Reveal Its Potential Roles in Salt Stress in Alfalfa (Medicago sativa L.). An Y, Suo X, Niu Q, Yin S, Chen L. Int J Mol Sci; 2022 Jun 08; 23(12):. PubMed ID: 35742869 [Abstract] [Full Text] [Related]
32. Overexpressing Arabidopsis ABF3 increases tolerance to multiple abiotic stresses and reduces leaf size in alfalfa. Wang Z, Su G, Li M, Ke Q, Kim SY, Li H, Huang J, Xu B, Deng XP, Kwak SS. Plant Physiol Biochem; 2016 Dec 08; 109():199-208. PubMed ID: 27721135 [Abstract] [Full Text] [Related]
33. From model to crop: functional characterization of SPL8 in M. truncatula led to genetic improvement of biomass yield and abiotic stress tolerance in alfalfa. Gou J, Debnath S, Sun L, Flanagan A, Tang Y, Jiang Q, Wen J, Wang ZY. Plant Biotechnol J; 2018 Apr 08; 16(4):951-962. PubMed ID: 28941083 [Abstract] [Full Text] [Related]
34. Improved drought tolerance of EMS mutagenized Alfalfa (Medicago sativa L.) mutants by in vitro screening at germination stage. Tiryaki I, Sari U, Cetin S, Acar O. Sci Rep; 2022 Jul 26; 12(1):12693. PubMed ID: 35882960 [Abstract] [Full Text] [Related]
35. Identification of Loci Associated with Drought Resistance Traits in Heterozygous Autotetraploid Alfalfa (Medicago sativa L.) Using Genome-Wide Association Studies with Genotyping by Sequencing. Zhang T, Yu LX, Zheng P, Li Y, Rivera M, Main D, Greene SL. PLoS One; 2015 Jul 26; 10(9):e0138931. PubMed ID: 26406473 [Abstract] [Full Text] [Related]
36. Gene Co-Expression Analysis Reveals Transcriptome Divergence between Wild and Cultivated Sugarcane under Drought Stress. Li P, Lin P, Zhao Z, Li Z, Liu Y, Huang C, Huang G, Xu L, Deng Z, Zhang Y, Zhao X. Int J Mol Sci; 2022 Jan 05; 23(1):. PubMed ID: 35008994 [Abstract] [Full Text] [Related]
37. Analysis of the alfalfa root transcriptome in response to salinity stress. Postnikova OA, Shao J, Nemchinov LG. Plant Cell Physiol; 2013 Jul 05; 54(7):1041-55. PubMed ID: 23592587 [Abstract] [Full Text] [Related]
38. Integrated physiological, metabolomic, and transcriptomic analyses elucidate the regulation mechanisms of lignin synthesis under osmotic stress in alfalfa leaf (Medicago sativa L.). Yang J, Yi J, Ma S, Wang Y, Song J, Li S, Feng Y, Sun H, Gao C, Yang R, Li Z, Cao Y, Yang P. BMC Genomics; 2024 Feb 13; 25(1):174. PubMed ID: 38350871 [Abstract] [Full Text] [Related]
39. Mechanism of action of microRNA166 on nitric oxide in alfalfa (Medicago sativa L.) under drought stress. Wei B, Wang Y, Ruan Q, Zhu X, Wang X, Wang T, Zhao Y, Wei X. BMC Genomics; 2024 Mar 28; 25(1):316. PubMed ID: 38549050 [Abstract] [Full Text] [Related]
40. Molecular cloning and functional analysis of the drought tolerance gene MsHSP70 from alfalfa (Medicago sativa L.). Li Z, Long R, Zhang T, Wang Z, Zhang F, Yang Q, Kang J, Sun Y. J Plant Res; 2017 Mar 28; 130(2):387-396. PubMed ID: 28150171 [Abstract] [Full Text] [Related] Page: [Previous] [Next] [New Search]